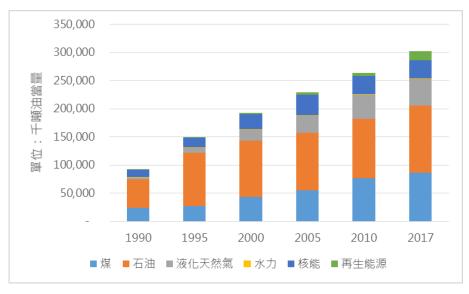
南韓第三期國家型能源基本計畫 -藉由能源轉型,實現永續能源,並提高人民生活品質

張景淳

國家能源發展策略規劃及決策支援能量建構計畫 工業技術研究院 綠能與環境研究所

摘要

2017 年文在寅政府上任後,喊出將邁向「脫核去煤」時代,說明全面檢討並廢除以核能使用為主的發電政策,提出多項指示,並於同年 10 月提出能源轉型(脫核)路線圖,後續將藉由能源轉型發展藍圖和具體執行計畫達成階段性減核,核電機組將由 2017 年 24 部機組、2022 年 28 部機組、2031 年 18 部機組、2038 年 14 部機組。

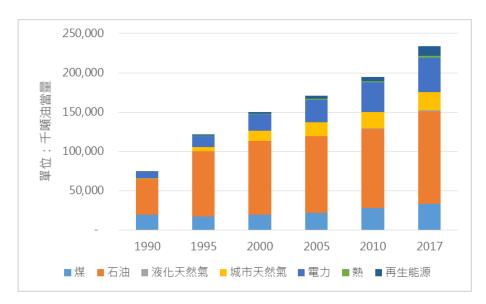

2017 年 12 月政府提出上任後的第一項能源政策-「第八次長期電力供需基本計畫」,納入公論化結論與政府能源轉型路徑,藉由對電價影響評估下提出電力配比假設,提出兩種假設情境,兩者 2030 年電力配比差別,為因應空污考量著重於燃煤與燃氣之多寡,核電配比目標則沒有改變。基於上述種種文在寅政府於能源轉型上的努力,終於 2019 年提出《第三期國家型能源基本計畫(2019-2040)》最終方案,內容充分反應了向潔淨和安全的能源轉型要求,提出五大重點課題,分別為能源消費結構創新、潔淨安全的能源組合、擴大分散式能源參與度、加強能源產業全球競爭力、為能源轉型奠定基礎;其中,除了需求面著重於工業、運輸與建築物的能源需求管理之外,再生能源提出 2040 年發電占比目標為 30-35%,內容更強調地方自治團體(地方政府)和市民的責任與義務,此外也在內容揭示未來老舊核能電廠不延役、未來亦不興建新核能電廠。

關鍵字:南韓、能源政策,核電

一、南韓能源情勢變化

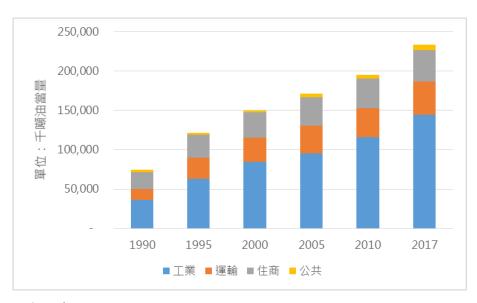
南韓國土面積 100,210 平方公里,人口由 1990 年的 42,869 人增加至 2017 年的 51,446 人,年均成長率 0.71%,近年呈現成長趨勢。國內生產毛額(Gross Domestic Product, GDP)由 1990 年的 1,913,830 億韓元(約新台幣 51,148 億元)成長至 2017 年 17,303,990 億韓元(約新台幣 462,460 億元),年均成長率 9.25%,大幅度成長,產業結構以服務業為主。能源供需趨勢與我國相似,長期仰賴進口,2017 年能源進口依存度自 1992 年以來刷新低紀錄為 94.0%,顯示近年南韓致力於提升國家能源自主率,且稍有成效。

南韓初級能源供給由1990年93,192千噸油當量,成長至2017年302,065 千噸油當量,年均成長率為4.96%;其中以石油占比最高達39.53%,其次 為煤28.53%、液化天然氣15.74%、核能10.47%、再生能源5.25%、水力0.49%。



資料來源: Yearbook of Energy Statisites, 2018, KEEI & MOTIE.

圖 1、南韓初級能源供給(燃料別)


最終能源消費由 1990 年 75,107 千頓油當量,成長至 2017 年 233,901 千噸油當量,年均成長率 4.80%,仍呈現增長趨勢。燃料別而言,石油為主要能源消費,2017 年占比達 50.39%,其次為電力 18.67%、煤 14.26%、天然氣 10.28%、再生能源 5.35%、熱 1.04%。部門別能源消費以工業部門為主,占比達 61.68%,1991-2017 年均成長率為 5.47%,近年工業部門占總消

費比例持續增加,主要能源使用依序為石油、煤炭與電力;住商部門最終能源消費占整體 17.06%,1991-2017 年均成長率為 2.39%,與工業部門相比成長較為趨緩,主要能源使用為電力、天然氣與石油;運輸部門占比 18.30%,1991-2017 年均成長率為 4.34%,主要使用柴油、揮發油與液化石油氣。

資料來源: Yearbook of Energy Statisitcs, 2018, KEEI & MOTIE.

圖 2、南韓最終能源消費(燃料別)

資料來源: Yearbook of Energy Statisitcs, 2018, KEEI & MOTIE.

圖 3、南韓最終能源消費(部門別)

南韓電廠總裝置容量由 2007 年的 68,442MW,增加為 2017 年的 113,667MW,近十年年均成長率約 5.69%;其中,火力發電裝置容量占比約 67.44%,核能為 19.82%,水力與其餘再生能源 12.74%。裝置量部分,燃煤 與燃氣分別較 2016 年增加;另因文在寅政府 2017 年上任後,同年 6 月 9 日經原子能安全委員會決議通過永久關閉南韓最老機組古里 1 號,故核能裝置容量較 2016 年下降。

發電量部份自 2007 年的 374,384 百萬度,提升至 2017 年 520,917 百萬度,十年間年均成長率 3.91%。其中燃煤發電占比較 2016 年(40.57%)增加至 43.99%,燃氣發電占比增加至 22.58%,核能發電占比則為 2014 年以來首次跌破 30%來到 27.12%,再生能源發電也首次突破 4%。

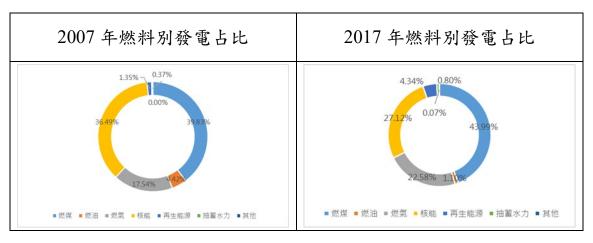


表 1、南韓燃料別發電量

資料來源:2017年南韓 KPX 電力市場操作年度報告

電力消費量由 2007 年 368,606 百萬度,持續增加至 2017 年 507,705 百萬度,十年間年均成長率 3.83%;其中工業部門 2017 年用電量位居第一, 占比達 54.49%,近十年均成長率 4.71%,其次依序為商業占比 25.68%、年成長率 2.97%,住宅占比 13.10%、年成長率 2.39%,公共部門占比 6.17%、年成長率 3.72%,運輸占比 0.56%、年成長率 1.08%。

二、歷年國家型能源基本計畫-制定流程與內容

依據《低碳綠色成長基本法》第41條,及《能源法》第10條第1項, 規範以20年為計畫期,每5年須制訂一次國家型能源基本計畫。南韓已分 別於 2008、2014 年公布第一和第二期計畫,今(2019)年第三期計畫,即提出 2019-2040 年中長期能源政策規劃、目標和推進戰略,內容涵蓋能源部門的綜合規劃,並提供國家整體能源計畫原則與方向,並以宏觀角度擬定計畫範疇與執行方針。

第一期國家型能源基本計畫為李明博總統(自由韓國黨)任內提出,計畫期間為 2008 至 2030 年,整體制定過程由中央政府主導,諮詢各部會與專家學者後即定稿,未透過任何公民諮議程序,能源政策主軸以供給為驅動,規劃之電廠多為大型且集中式發電,並於基本計畫內容揭示核能裝置容量占比 2030 年需達 41%,再生能源於最終能源消費占比為 11%。

第二期國家型能源基本計畫為朴槿惠總統(自由韓國黨)任內提出,計畫期間為 2014 至 2035 年,整體規劃首次開放制定流程,由中央組成官方和民間委員各半的聯合小組,下分五個工作小組,以整合小組為首,向下分別為能源需求、電力、核電與再生能源小組,各組經過討論後,以整合小組提出草案,經過公聽會、能源委員會、綠色成長委員會、國務會議等程序,才公開定稿。計畫主軸著重需求管理,計畫內容著重分散型能源發電系統,2035 年核能裝置容量占比雖已較第一期計畫下修至 29%,但未來仍持續新增核電裝置,以維持一定發電比例,而再生能源目標則與第一期計畫相同。

第三期國家型能源基本計畫,則為南韓政黨輪替,文在寅總統(共同民主黨)上任後,首次於2017年宣布持續推動「階段性減核、擴大再生能源發展」為主的「能源轉型政策」路線圖後制定;整體流程共分為四個階段,分別為先期研究、私營工作小組運作、對外徵求意見、最終政府方案發表及國務會議審核。

(一)先期研究

制定時程自 2017 年 11 月至 2018 年 8 月,參與投入單位除了產業通商資源部(Minister of Trade, Industry and Energy, MOTIE)之外,另有研究機構如韓國能源經濟研究所(Korea Energy Economics Institute, KEEI)、韓國發展研究院、工業研究院、韓國能源公司與韓國電力交易所(Korea Power Exchange, KPX);因過去兩次基本計畫的提出,皆被外界詬病需求面模型預

測失準,且未對外公開分析過程,對此提出先期研究之目的即針對需求面預 測,進行基本分析與研究。

(二)私營工作小組運作

整體計畫制定設計以民間專家為中心,共分為 5 個小組,以整合小組為中心,下分需求、衝突管理與溝通、產業與供給小組,聘請 75 名產官學研及民間團體代表作為小組委員參與討論,運作期間為 2018 年 3 月至 11 月,並於同年 11 月 7 日向中央政府提交建議案。

上述私營工作小組藉由 76 次分組會議,5 次區域說明會等,深入研究政策課題,此外,有鑑於能源選擇爭議不斷,首創納入衝突管理與溝通小組,賦予建立衝突管理機制責任,較以往創新與不同,各小組執掌項目不同,相關內容羅列於下:

- 1. 整合小組:(1)基本方向和主要政策任務整合;(2)機關間合作的談判 和協商。
- 2. 需求小組:(1)中長期需求預測、目標與組合;(2)改善需求管理和效率。
- 3. 衝突管理與溝通小組:(1)擴大公眾參與和加強分散式能源;(2)建立 衝突管理機制。
- 4. 產業小組:(1)培育能源新興產業和研發推廣戰略;(2)能源部門創造 就業機會。
- 供給小組:(1)建立能源供應系統、確保穩定;(2)擴大供電計畫;(3) 東北亞能源合作體系。

(三)對外徵求意見

以私營工作小組提出之建議案為基礎,先做內部(由產業通商資源部與各部會)討論,再對外廣泛徵求意見,辦理 10 場次公開討論會及利害關係人座談會,執行期間落於 2018 年 11 月至 2019 年 4 月;上述公開討論會已分別於 12/5、12/14、12/17 和原預計 12 月底(實際辦理為 2019 年 2 月 26 日),採議題別各自召開,場次討論議題如需求面消費結構的創新、能源轉型的挑戰、工業 4.0 和能源產業的未來、與未來可再生能源的願景,相關討論會議

皆由韓國能源資訊文化基金會(KEIA)負責,以直播、錄影、網路公開於 YouTube 平台。

此外,公開聽證會則於 2019 年 4 月 19 日召開,除了說明第三期國家型能源基本計畫(草案)內容之外,亦說明需求預測和可再生能源之分析內容,並藉由專家學者引導現場約 300 人共同討論方式,廣泛收集大眾意見。

(四) 最終政府方案發表及國務會議審核

最終方案確認前,尚須通過能源委員會、綠色成長委員會以及國務院 (同我國行政院層級)等審核同意,方能定案。故在 2019 年 5 月 10 日通過能源委員會、同年 5 月 17 日通過綠色成長委員會的審議之下,同年 6 月 4 日舉行國務院內閣會議,審議並確認第三期能源基本計畫(2019-2040)內容。

三、第三期國家型能源基本計畫-基本方向

文在寅總統 2017 年上任後,提出的政策條件包含向潔淨和安全的能源轉型的要求,且現階段南韓面臨能源效率低、能源與電力消費量日益增多,及未來能源產業缺乏創造力,並對地方分散式能源設施接受度低的情況下,2017 年提出「能源轉型政策」路線,除了建立包含逐步縮減核電廠方案的能源轉型目標,並提出「3020 可再生能源計畫」,制定 2030 年可再生能源發電占比 20%的目標,擴大國民參與,及「第八次長期電力供需基本計畫」大幅改善 2031 年電力設備規劃和方案。

2018 年為履行和完善能源轉型措施,提出核電產業人才制定等區域補 救措施,並宣布共計關閉 4 座老舊燃媒發電(預計至 2022 年再關閉 6 座), 藉由春季關閉老舊燃煤電廠,發電燃料稅制等方式,減少燃煤發電;2019 年 更推動發展新興產業,1 月以氫氣和燃料電池為兩大軸心,建構氫產業生態 系統,宣布啟動氫經濟路線圖,4 月為加強國內可再生能源產業的全球技術 競爭力,擴充增長基礎,制定可再生能源產業競爭力強化方案。

基於上述相關政策擬定,第三次能源基本計畫,保有了第一次和第二次 規劃的基本方向和匹配性,充分反應了向潔淨和安全的能源轉型要求。以供 給為中心的高耗能體制,藉由能源消費結構革新,向已發展國家高效率型、 低消費型結構轉變。維持穩定的能源供應,解決懸浮微粒問題及履行《巴黎氣候公約》,減少溫室氣體排放的義務。而日本福島核電廠事故和南韓慶州(2016年9月)和浦頂(2017年11月)地震後,反應了國民對土地的安全要求,故對大規模、中央集中型能源設施和輸配電網,導入擴大分散型能源,及加入地區和地方自治團體等的參與;後續更將藉由第四次工業革命技術的銜接,在能源領域培育新的產業服務,創造優質的就業機會。

對此,第三期國家型能源基本計畫提出期望藉由能源轉型過程,在穩定 (藉由穩定能源轉型,實現能源供給)、安全(加強自然災害事故應變系統,確保人民生活安全)、環境(建立生態友好的供需結構)、共存(加強市民與地方當局的權利、義務與責任,建立分散式能源系統)、發展(能源產業與第四次工業革命的融合)等五大願景和核心價值下,2040年實現永續發展的能源和提高國民生活品質。

2040 年四大政策目標圍繞能源效率、溫室氣體排放、再生能源發電占 比、發電和運輸部門細懸浮微粒,提出五大基本方向。

- (一)需求:加強工業、運輸、建築等部門需求管理,合理價格體系,藉由 2040 年能源消費效率改善 38%、需求減少 18.6%。
- (二)供給:擴大可再生能源比例(2040 年 30%-35%),核電與燃煤發電逐步減少,實現潔淨且安全的能源組合。
- (三)系統:可再生能源、燃料電池等需求,擴大分散式能源比重,強化 區域地方政府的作用和責任。
- (四)產業:大力發展可再生能源、氫氣等未來能源產業,讓傳統能源產業實現高附加價值,核電產業保有核心生態系統。
- (五)基礎:為促進能源轉型,改善電力、燃氣市場制度,促進新產業,並創建能源大數據平台。

四、需求面預測

(一)社經條件假設

- 1. 2017-2040 年
- 2. 人口年均成長率 0.1%(2031 年後人口逐步減少)

- 3. 家庭受單人家庭增加影響,年均成長率 0.6%
- 4. 經濟成長年均成長率 2.0%(韓國開發研究院(KDI)利用生產函數接近法估算)
- 產業結構:服務業占比擴大的同時,製造業保持增長趨勢;製造業中以石化和裝配金屬(半導體、汽車、造船等)產業為主。

表 2、南韓 2040 年產業結構預測

單位:兆韓元,2010年固定價格

	2017	2030	2040	年均成長率(%)
農林漁業礦業	30.6	33.0	32.5	0.26
製造業	452.2	585.4	656.8	1.64
石化非金屬鋼	104.3	128.3	140.0	1.29
裝配金屬	280.3	375.7	430.4	1.88
SOC(建築業等)	100.2	117.9	123.0	0.90
服務業	827.0	1191.8	1393.2	2.29

資料來源:南韓第三期國家型能源基本計畫,產業通商資源部,2019。

(二)標準需求展望(BAU, 2017-2040年)

1. 初級能源供給:年均成長率 0.6%

2. 最終能源消費:年均成長率 0.8%

3. 能源密集度:年均成長率 -1.1%

表 3、南韓標準需求展望(BAU)

	2017	2030	2040	2017-2030	2030-2040	2017-2040
初級能源供給 (百萬 TOE)	244.1	281.1	279.9	1.1%	-0.04%	0.6%
最終能源消費 (百萬 TOE)	176.0	204.9	211.0	1.2%	0.3%	0.8%
能源密集度 (TOE/百萬韓元)	0.113	0.096	0.087	-1.2%	-1.1%	-1.1%

資料來源: 南韓第三期國家型能源基本計畫,產業通商資源部,2019。

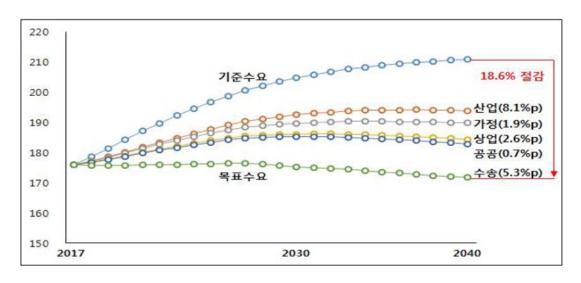
(三)目標需求(節能後)

- 1. 最終能源消費:通過能源消費結構創新,促使 2040 年最終能源消費 比標準需求預測(BAU)減少 18.6%(2027 年開始逐步削減最終能源 消費總量)
- 2. 能源密集度: 2040 年較 2017 年改善 38%
- 3. 能源密集度(TOE/百萬韓元): 2017 年 0.113→2030 年 0.082→2040 年 0.070

表 4、目標需求預測(最終能源消費,節能後)

單位:百萬 TOE

	2017	2030	2035	2040	2017-2030	2030-2040	2017-2040
BAU	176.0	204.9	209.0	211.0	1.2%	0.3%	0.8%
目標需求	176.0	175.3	173.0	171.8	0.0%	-0.2%	-0.1%
減少率	-	14.4%	17.2%	18.6%	-	-	-


^{*}不包括原材料消耗

資料來源: 南韓第三期國家型能源基本計畫,產業通商資源部,2019。

(四)溫室氣體排放預測

- 整體排放量:相較 BAU,預測 2040 年目標量將減少 18.6%,其中產業減少 8.1%、運輸減少 5.3%、商業減少 2.6%、住宅減少 1.9%、公共部門減少 0.7%。
- 2. 產業部門:實施排放權交易目標管理制,藉由提高中小企業效率等 支援,較BAU減少15%。其中,碳排放交易制度目標管理對象中, 企業將占70%。
- 3. 運輸部門:提高汽車燃油效率、提高海運、航空效率、普及電動和 氫氣汽車,藉由大眾交通等,較 BAU 減少 25.4%。
- 4. 住宅部門:高效率設備、建物能效提高等,與BAU相比減少18.8%。

5. 商業與公共部門:透過建築能效提升,設備能效提升,藉由實行能源效率資源標準(EERS)制度,與BAU相比分別減少22.6%和18.6%。

備註:減量依序為產業(8.1%)、住宅(1.9%)、商業(2.6%)、公共(0.7%)、運輸(5.3%) 資料來源:南韓第三期國家型能源基本計畫,產業通商資源部,2019。

圖 4、2040 年溫室氣體排放目標(草案)

五、五大重點課題

具體而言,第三次能源基本計畫在「藉由能源轉型過程中,實現持續發展和提高國民生活品質」的規劃下,由五大重點推進課題組成。

(一)能源消費結構創新

1. 加強工業、建築、運輸等部門的需求管理

產業部門:目標能源密集度由 2017 年的 0.150 TOE/百萬韓元,降至 2040 年的 0.119 TOE/百萬韓元,降幅達 21%。主要提出措施:

- (1) 能源密集度自願協議: 2020 年能耗高的產業(年耗能 2,000 TOE 以上),能源密集度每年節約 1%的自願協議。完成目標之產業,可得到優良工作場所認證,並豁免能源診斷查核制度。
- (2) 普及高效率設備:高效率電動馬達替代工業低壓電機,並應用風扇和泵等設備的最低效率標準。至 2030 年為止,電動馬達(以 7.5 kW 為準)效率提升 4.2%(2017 年 87.5%→2030 年 91.7%)。2017 年占產

業部門能耗 18.3%的鍋爐,將提供補助汰換(EERS 制度利用)。

- (3) 擴大工廠能源管理系統: 2025 年以年耗能 10 萬 TOE 以上產業為對象,必須義務性裝設工廠能源管理系統(FEMS)。以 2017 年為基準,年耗能 10 萬 TOE 以上產業約為 157 家,占整體產業部門能耗 57.7%。針對年耗能少於 10 萬 TOE 的中小型企業,將擴大補助工廠能源管理系統(FEMS),預估直至 2040 年將超過 3,000 家企業受惠。
- (4) 建立智能能源產業園區建設:目標 2022 年完成 10 座工業建物,將 與智能工業項目扣合,展示能源自主及如何減少工廠能耗,主要導 入項目包含獨立的太陽光電系統、燃料電池、微電網等。

建築部門:目標能源密集度由 2017 年的 0.029 TOE/百萬韓元,降至 2040 年的 0.018 TOE/百萬韓元,降幅達 38%。主要提出措施:

- (1) 既有建築物引入能效評估制度:2022 年起,所有公共建築物、2024 年起適用於 3,000 平方公尺以上商業建築物。除了需公告各建築物 類型和建築物材質等級,並將建構能效評估用數據平台,給予評價 優良建築認定標誌,主要於房地產交易時,公共、商業用建築物能 源效率評估結果須公開(綠色修正案),故須執行建築物能耗普查(每 3年一次);並藉由能源效率資源標準(EERS)制度,擴大建築物綠色 改造,提高老舊住商建築物能效的強制系統。
- (2) 新建建築物 2030 年達零耗能:後續將由國土部公告,建築物節能設計標準將逐步加嚴,並以隔熱標準需提升至德國水準。並以家用鍋爐最低效率等級標準,目前5級,至2022 年將提升至3級、2025年提升至1級。
- (3) 2028 年螢光燈管全面退出市場,並將藉由政府(預算支持)、製造商 (研發)與賣家(消費者教育和產品訊息)之間的關聯,引入領跑者(top-runner)計畫,推廣高效率家電產品。
- (4) 擴大建築能源管理系統:擴大零能耗建築物義務化範圍,目標 2025 年擴大至私有建築物(10,000 平方公尺以上)強制裝設建築能源管理 系統(BEMS)。

運輸部門:車輛平均油耗目標設定,小客車平均油耗 (km/ℓ) 將由 2017年 16.8 提升至 2040年 35.0(提高約 2 倍),中大型車平均油耗 (km/ℓ) 由 2017年 5.19 提升至 2040年 7.5(提升約 1.5 倍)。相關措施如下:

- (1) 提高汽車油耗:目標 2040 年引入中大型車輛(客車、卡車)油耗目標, 拉動國內汽車油耗達已開發國家標準。2022 年中大型車輛在油耗申 報時,必須應用平均燃油效率標準。並藉由改善稅制等作法,普及 環保車輛,將國內小客車燃油效率提高至歐洲水準。
- (2) 擴大環保車輛推廣:目標 2040 年電動車(含插電式混合動力車 PHEV) 達 830 萬輛、普及 290 萬輛(累計)氫汽車;將藉由加強公共機構購買環保汽車(租借)義務,擴大快速充電/加氫站,引入定期檢查制度等,擴充電動車、氫汽車的充電/加氫維修基礎設施;並開發安全性評價技術及建立氫氣公車綜合轉乘中心等,推廣氫氣公車
- (3) 交通系統創新:將建構主幹道智能交通系統(ITS, Intelligent Transport System),並加強航空、海運等非公路運輸部門,提高能源效率的誘因。
- 2. 激活需求管理市場:提出物聯網(IoT)和其他能源技術,如儲能系統(ESS), 藉由即時需求管理創建新業務。
 - (1) 需求管理商業發掘並擴散:擴大與儲能系統相關的業務,擴大國民 需量反應(DR)市場(前期實行住宅計時收費制度、綠色收費制度、需 求管理型收費制度等),開發 V2G 商業模式,培養 EMS 經營者等。
 - (2) 加強需求管理市場基礎:主要為智慧電錶(AMI)的擴展,目標 2020 年全國安裝 AMI 達 2,250 萬戶,並建立智能計量標準;此外亦建立 電力大數據平台,促使韓國電力公司(KEPCO)導入電力數據利用率, 創建新的私人服務市場和商業模式。並提高能源效率義務化制度, 目標 2020 年政府將立法,賦予能源供應業者節能目標,並要求為消 費者提供能源效率投資。
- 能源價格體系合理化:以能源價格反應成本和外部成本,合理運作能源 稅收制度。
 - (1) 電費體制改革:反應合理燃料成本和電費系統等成本因素,即外部

成本的彈性能夠及時反映出來,並將按使用用途區分的收費制度,逐步向以成本爲基礎的電費體制轉變;並將藉由價格,加強用電尖峰管理。AMI分配計畫,將逐步擴展至低壓用戶,並考慮對一般用途和產業用途的平時費用折扣制度,引入尖載時間費用附加的需求管理型收費制(CPP, Critical Peak Pricing);及擴大消費者選擇權,可自由選擇使用新再生能源生產之綠色電力。

- (2) 改善燃氣與熱的收費標準:燃氣費將朝提高消費者接受度與公平性的方向,改善收費體系;而供熱部份,將以生產成本、供熱替代價格、消費者可接受度,進行改善之中長期研究。
- (3) 能源相對價格調整:發電用燃料將合理反應環境與安全方面的外部 成本,並將成立外部成本評估委員會,並期針對價格進行審議,委 員會組成初步規劃由國政調查室、產業通商資源部、財政部、環境 部、國土部等相關部會,及學界專家等組成。
- 4. 擴大非電力的能源使用:擴大熱、瓦斯等非電力能源利用,最大限度地 減少轉換損失,謀求能源的有效利用。
 - (1) 建立國家熱利用平台:目標 2021 年完成國家熱能地理資訊系統,編制未使用的熱需求訊息,並將其作為熱利用平台。

(二)潔淨安全的能源組合

- 1. 實現永續的能源結構:將國民對潔淨、安全的能源要求放首位,達到可 持續的能源結構,並提出可再生能源 2040 年發電占比擴大至 30-35%。
 - (1) 可再生能源:2040年可再生能源發電占比擴大至30-35%。
 - A. 工作小組建議案:2018 年 11 月提出,2040 年可再生能源發電 占比 25-40%。
 - B. 專家小組建議案: 2040 年可再生能源發電占比目標在 30-35%。
 - C. 最終以專家小組結果為基礎,考量技術發展水平等未來環境變化的可能性,設定30~35%的目標範圍。
 - (2) 天然氣:擴大作為發電用能源、家庭用、運輸用。
 - (3) 氫能:加大運輸燃料發電利用,在發展氫能經濟路線圖(2019年1月

- 公布)的基礎上,目標於2040年國內利用氫氣526萬噸。
- (4)核能:長期逐步減少核能發電及解決核燃料處理問題後,老舊電廠不延役,不新建核電廠,逐步減少核能使用。使用後核廢料問題,將藉由重新討論管理政策方式,達成社會共識(為解決中長期核廢料處置設施和核電廠內臨時儲存設施奠定基礎)。
- (5) 燃煤:主要政策方向,將面對懸浮微粒、溫室氣體排放問題,果斷減少燃煤發電,禁止新建燃煤電廠,取消經濟效益差的老舊燃煤電廠,或改用天然氣等燃料。考量減少細懸浮微粒及碳排放交易費用等,將限制使用上限(如春季關閉或降載燃煤電廠)。
- (6) 燃油:主要政策方向將著重航空船舶用能增加,電氫汽車推廣擴大, 燃油作爲運輸用能的占比縮小,作爲工業用原料擴大利用。並考量 石油產業在國家經濟中的重要性和非常時期的作用,將維持穩定的 供需體系及努力提高產業競爭力。
- (7) 維持溫室氣體路線圖的匹配性: 2018 年 7 月提出溫室氣體減量目標修正案,將藉由完善細懸浮微粒管理綜合對策、第 3 次能源基本計畫、第 9 次電力供需基本計畫等,在 2020 年向聯合國提交修正後的國家自定貢獻(NDC),以確定減排目標和手段。
- 加強能源安全,提高供應穩定性:爲保證能源穩定供應,推進區域聯網, 引進多元化等全球合作。
 - (1) 為使原油、天然氣等能源持續多元化,將推進東北亞超級電網,共 同研究,為國內推進奠定基礎。
- 加強能源安全管理:大幅加強地下埋藏能源設施、發電廠、石油、天然 氣等儲藏設施、及電氣設備等的安全管理。

(三)擴大分散式能源參與度

- 1. 擴展分散式能源供應系統:將可再生能源、燃料電池等分散型電源發電 占比,目標 2040 年擴大至 30% (2017 年分散式電力發電占比 12%)。
 - (1) 擴大小規模產消合一者(Prosumer)型分散電源的普及,促使消費者 參與能源生產,增強系統的分散電源可接受性。

- 建立溝通,參與和分散治理:在能源政策過程中,加強資訊公開和溝通力度,強化地方政府的責任和作用。
 - (1) 藉由溝通有效預防爭議:建立爭議管理機制,後續將由國務調整室 主責「爭議管理政策協商會議」,負責各部會爭議調解會議及爭議管 理審議委員會。並培養具備解決能源領域爭議專業性的中立專家, 及研究是否於產業通商資源部內,新設立內部爭議管理諮詢部門。
 - (2) 擴大公民參與:藉由居民參與的再生能源供應認證書(REC)加權等制度設計,鼓勵居民參與;並擴大私人太陽光電、家庭建築用燃料電池等市民可直接參與能源生產或共享利益的項目。
 - (3) 加強地方政府責任:在能源供需中擴大區域社會和地方政府的責任和作用。
 - A. 引入以地方自治團體(地方政府)為中心的計畫:如大型可再生開發規劃由市政當局主責,許可證等亦由市府分批處理核發。並制定符合在地條件的能源需求預測,當中需納入地方節能管理。
 - B. 充分反應地方能源規劃:確保與中央政府一致性規劃,但同時仍可反應不同區域的特點;在市民積極參與規劃過程中,中央政府應給予尊重與支持,並建立一套地方評估系統,可加強評估年度績效,目標 2020 年在核發地方補助預算時,將藉由此套系統,優待表現優異的地方政府。
 - C. 成立區域能源中心,作為實現在地主導能源政策的平台:該區域能源中心主要負責協助地方政府制定區域能源計畫,並制定有效的地方能源補助資金戰略(如發電廠周邊地區支援金、輸配變電站周邊地區支援金、地區資源設施稅等);此外,中央和地方政府間,挖掘符合在地特性的能源產業,並以居民與地方政府為對象,履行能源教育與宣傳,達到溝通媒介之作用。
- 改善能源福利支持體系:爲提高能源福利的品質,將擴大投資規模和補助對象,使此系統簡化及提升效率。
 - (1) 改善能源福利:考量能源價格上漲趨勢,將逐步擴大能源補貼對象, 主要為夏季酷熱氣候,擴大使用空調衍生之電力費用,提供相關減

免措施;另外,也將提供相關擔保貸款,整合各項補助措施,並將針對低收入戶家庭導入適當的技術(如太陽光電系統、冷暖設備效率改善等)。

(2) 提高能源福利系統效率:考量到每個社福機構的職能和業務能力, 需設立專門的能源機構,進行能源成本和設備相關之協調;並建立 社福資料庫,瞭解各地方補助對象的能源使用狀況、居住型態等, 並建立一套績效評價制度。此外,為消弭政府無法補助之死角地帶, 希望可帶動民間捐款刺激私人參與。

(四)加強能源產業全球競爭力

- 1. 加強可再生能源產業的競爭力:根據 2017 年公布之「3020 可再生能源計劃」,可再生能源產業將成為未來增長引擎,應擴大投資。
 - (1) 以產品品質為基礎,轉變市場競爭:引入再生能源碳認證制度,對於再生能源設備的生產、運輸、安裝和廢棄生命週期中,碳足跡較低的設備可獲得再生能源憑證(REC)的加權優惠;另,提出擴大再生能源憑證(REC)競標,將複雜多樣的 REC 交易轉變為可考量選址、產業貢獻度等的競爭投標方式,並建立一條龍服務等機制。
 - (2) 加強產業生態系統的競爭力,並促進海外擴張:藉由穩定擴大內需市場,保持擴大可再生能源投資趨勢,並建立 RE 100(自願性 100% 電力來自綠能為目標),促進民間投資擴大。
- 促進氫工業實現氫經濟:利用氫作為重要的能源,確保產業創新和減少 溫室氣體。
 - (1) 創造氫使用環境,並擴充和普及供氫系統:擴大氫動力汽車、加氫 站和其他氫能源的流通性;目標至 2040 年氫燃料汽車擴大至 275 萬 輛,並確保核心零件 100%國產化;至 2040 年氫燃料公車與巴士達 4 萬輛普及目標。為不造成氫氣的利用不便性,將在城市中心、休 息站、停車場等擴建加氫站。
 - (2) 引導氫經濟,營造生態鏈:從氫汽車、燃料電池、氫生產和儲存等 技術,有關部會需共同制定技術開發路線圖;並制定氫經濟法(暫稱),

成立氫經濟促進委員會(主席建議由國務總理擔任),跨部會推動基礎建構;並發布《氫安全指南》和體驗館,提高公眾對氫能的認識。

- 3. 促進與效率相關的行業:針對高效率設備行業、工廠與建築為對象,建立能源解決方案服務產業。
- 4. 維護核工業核心生態系統:為長期安全營運核電廠,提供核心生態系統 支助。維護核電廠生態系統:
 - (1) 藉由出口支持和安全投資,確保支持核電產業。
 - (2) 每年制定長期安全投資路線圖(2019-2030)。
 - (3) 維持核電產業,進行週期性現狀調查及瞭解困難事項,即時提供支援。
 - (4) 維護產業人力和新生態,提出企業核心人力維持對策,藉由擴大專業人員的招募比重,維持核能人力的中長期供需平衡。
- 5. 加強包括油氣在內的傳統能源產業的競爭力:針對石油擴大其副產品生產等新業務,提高石油流通網絡;並針對天然氣建立基礎設施,以擴大對天然氣使用之運輸需求。

(五)為能源轉型奠定基礎

- 為落實能源轉型,完善電力、燃氣、熱市場制度,推進能源技術開發及人員培訓。
 - (1) 電力:建立健全即時輔助服務運行機制,加強綠色電力容量費用差額補償等。
 - (2) 燃氣:建立天然氣直接進口系統和引入個人費率計畫。
 - (3) 熱能:提供區域間熱利用的獎勵。

2. 建立能源數據平台

- (1) 能源資訊統計:構建能源需求管理統計資料庫,彌補統計資料相對 不足的現況,如將構建住宅、產業與建築物部門主要能源消費資訊, 及其設備分類的普及現狀,並利用使用時間負載模式計算其消費量 等,及建構按設備別進行節能潛在量資料庫等。
- (2) 建構大數據平台:整合、營運、並提供能源供應、需求和技術資訊。

六、結論

2017 年文在寅政府上任後,喊出將邁向「脫核去煤」時代,說明全面檢討並廢除以核能使用為主的發電政策,提出多項指示:

- (一)2015年2月獲得延役至2022年的月城1號機組提前關閉。
- (二)建設中的新古里5號、6號機組,綜合考慮安全性、興建進度、投資和補償成本、系統備用容量等,將以「公論化委員會」審議方式,達成社會共識決議是否中斷興建工程。
- (三)未來燃煤與核能發電缺口,將積極以提升新再生能源及天然氣發電 補足。
- (四)相關政策配套措施,如能源稅、調整產業結構、工業電價制度等, 亦將重新檢討。

對此,同年10月經公民審議後,達 59.5%的公民代表認為新古里 5、6 號機組應該重啟建設,其餘 40.5%則持反對態度。最終調查結果促使政府宣布重啟新古里核電機組的建設。但高達 53.2%的公民認為長遠政策應縮減核電比例,且應趁早擬定如強化核電廠安全標準,擴大新及再生能源占比投資,及儘早制定核廢料解決方案。因此,政府提出能源轉型(脫核)路線圖,後續將藉由能源轉型發展藍圖和具體執行計畫達成階段性減核,核電機組將由 2017年 24 部機組、2022年 28 部機組、2031年 18 部機組、2038年 14 部機組。階段性減核支出費用,將利用跨部會協商和國會審議,借由基金支付,必要時也會修法。

2017年12月「第八次長期電力供需基本計畫」,納入公論化結論與政府能源轉型路徑,藉由對電價影響評估下提出電力配比假設,提出兩種假設情境,兩者2030年電力配比差別,為因應空污考量著重於燃煤與燃氣之多寡,核電配比目標則沒有改變。基於上述種種文在寅政府於能源轉型上的努力,在經過一年多私營工作小組共75名產官學研與民間團體代表的密集討論下,多場次利害關係人對談與召開公聽會等程序,終於今(2019)年政府提出《第三期國家型能源基本計畫(2019-2040)》最終方案發表,並經國務會議審核。

內容保有 2008 年第一期和 2014 第二期國家型能源基本計畫的基本方向,充分反應了向潔淨和安全的能源轉型要求,提出五大重點課題,分別為能源消費結構創新、潔淨安全的能源組合、擴大分散式能源參與度、加強能源產業全球競爭力、為能源轉型奠定基礎;其中,除了需求面著重於工業、運輸與建築物的能源需求管理之外,再生能源提出 2040 年發電占比目標為30-35%,內容更強調地方自治團體(地方政府)和市民的責任與義務,此外也在內容揭示未來老舊核能電廠不延役、未來亦不興建新核能電廠,但核電出口產業與相關人才將持續培育,以維持國際競爭力。

參考文獻

- 1. 南韓第三期國家型能源基本計畫,產業通商資源部,2019。
- 2. Yearbook of Energy Statisites, 2018, KEEI & MOTIE.
- 3. 2017年南韓電力市場操作年度報告,KPX,2018。