知識物件上傳表

計畫名稱:112年度「淨零排放-MW 等級儲能電池健康檢測及評估技術優化」(1/2)

上傳主題: 儲能電池安全保護設計

提報機構:工業技術研究院綠能所/資通所

提報時間: 2023年9月5日

與計畫相關	■1.是 □2. 否
國別	■1.國內 □2. 國外:
能源業務	□1.能源政策(包含政策工具及碳交易、碳稅等) □2.石油及瓦斯 □3.電力及煤碳(包含電力供應、輸配、煤炭、核能) ■4.新及再生能源 □5.節約能源(包含工業、住商、運輸等部門) □6.其他
能源領域	□1.能源總體政策與法規 □2.能源安全 □3.能源供需 □4.能源環境 □5.能源價格 □6.能源經濟 ■7.能源科技 □8.能源產業 □9.能源措施 □10.能源推廣 □11.能源統計 □12.國際合作
決策知識類 別	□1.建言 (策略、政策、措施、法規) ■2.評析(先進技術或方法、策略、政策、措施、法規) □3.標竿及統計數據:技術或方法、產業、市場等趨勢分析 □4.其他:
重點摘述	節能減碳已是公認的普世價值,我國完成2025年再生能源政策與2050淨零碳排路徑目標,將加速電動載具的推動以及建置儲能設施,克服再生能源產出之不穩定,增進整體電網的強韌性。 然而因電池電化學運作複雜性與材料特性,一旦形成熱失控將造成難以撲滅的火災意外。現階段各國的電池相關意外時有所聞,造成民眾強烈的不信任感,使相關能源政策推動具很大阻力。 民眾強烈的不信任感,使相關能源政策推動具很大阻力。 基於放任異常的電池狀態會造成電池過充過放、容量損壞以及過熱等問題,故系統需能做到精確的監測與正確的控制。為此本文將就電池關鍵參數、意外成因進行分析,並簡介各式保護電路設計,其中包含單/多模組電池保護方案功能,源對源、高低側以及過載保護電路,並分析其優劣點,以做為儲能電池管理系統設計之參考。
詳細說明	鋰離子電池的高功率密度使其非常受歡迎,應用的層面也日益增長。然而,鋰離子電池的意外一直以來都是各方極為在意的問題,而意外的發生與否,關鍵在於電池管理系統(Battery Management System, BMS)系統是否能設計適當電池保護電路(如下圖1),以及對於電池關鍵參數做精確的監測與正常的控制,達到危險反應的電池關鍵參數下斷開電池與充電器或負載的連接,以防止電池損壞和電池故障。

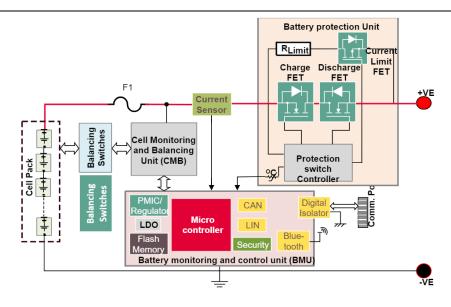


圖1、電池管理系統與電池保護電路單元

電池關鍵參數

電池關鍵參數主要包含過充過放、異常高低溫、過電流、極性反 接等,說明如下表:

關鍵參數	說明
過充過放	電池充電超過允許的最大容量或放電超過充電的最小容
	量,長時間會造成電池損壞或容量損失。
異常高低溫	電池芯的內部溫度超過其安全工作最高最低溫度範圍。
過電流	當電池短路狀態或系統啟動時產生之高浪湧電流,並超
	過額定電流限值。
極性反接	電池端子錯誤插入設備時,例如將正負極接反誤動作。

表1、電池關鍵參數說明

電池系統異常成因

如果系統未能正確處理異常電池關鍵參數,長期必定造成電池系 統電芯、電池組或設備的問題,進而產生不同的之電池系統異常,如 下所示:

表2、雷池系統異常成因說明

	, -	
成因		說明

成因	說明
	由於電池過度充電、撞擊、內短線等原因所造成。熱
熱失控	失控一般已進入無法恢復的狀態,若不能即時進行相
	對應處理將導致火災。
電池芯容量損	通常是由於電池放電低於其指定閥值所致,一般而言
壞	鋰電池放電應不低於容量之30%,以增進使用壽命。
負載設備損壞	通常是由於浪湧電流管理不當或不正確的設備連接所
大村 (大村)	造成電池,例如電極之極性接反。

● 電池保護方案設計

根據不同的應用需求以及電壓範圍,可進行不同的電池保護方案 設計,包含單模組電池保護方案以及多模組電池保護方案,說明如 下:

表3、電池組保護電路架構設計方案

架構	說明
	單模塊電池通常適用於電壓範圍不超過
 單模組電池保護方案	150 V 的應用,例如:電池供電工具、吸
平 保 組 电 心 休 護 力 杀	塵器、多旋翼飛行器、機器人、電動滑
	板車、電動自行車。
	多模塊電池通常適用於高壓電池應用,
夕世 如 雷 油 归 诺 十 安	包括:汽車、電動堆高機、電動船、住
多模組電池保護方案	宅和公用事業規模的儲能系統和不斷電
	系統(Uninterruptible Power Supply, UPS)。

● 電池組保護電路設計分析

進一步細分不同架構下之電池保護電路設計,針對不同需求如: 價格、切換速度、實施難度等,可再分為源對源保護電路、高側保 護、低側保護及漏極保護電路等,其相關說明以優劣點分析如下:

表4、電池組保護電路設計分類

	T	
架構	說明	優劣點
源對源保護電路	在共源(Source)極配置	優點:
	中,金屬氧化物半導體	• 切換速度快。
	場 效 電 晶 體 (Metal-	便宜。
	Oxide-Semiconductor	• 僅需要一個電荷泵或
	Field-Effect Transistor,	隔離源。
	MOSFET) 串聯連接,	・一個柵極(Gate)驅動
	其源極相互連接,	器即可驅動兩個
	MOSFET 的漏(Drain)極	$MOSFET \circ$
	端子形成保護電路的內	• 設計簡單。
	部和外部。MOSFET 的	缺點:
	這種配置也可以稱為背	• 採用標準漏極封裝的
	對背配置。	MOSFET 的散熱面積
		小。
		· 散熱不良影響控制和
		傳感解決方案的準確
		性和效率。
高側保護	在高側保護設計,斷開	優點:
	MOSFET 與電池組的正	• 不繞地,不懸地。
	極端子串聯。	缺點:

		雨雨世七雨 tt 石 lum
		• 需要帶有電荷泵的柵
		極驅動器來驅動
		MOSFET •
低側保護	在低側保護設計,斷開	優點:
	MOSFET 與電池組的負	• 易於實施,柵極驅動
	極端子串聯。	器不需要電荷泵。
		缺點:
		• 因懸掛接地的原因造
		成通過電池外殼形成
		接地旁路的可能性,
		會對通訊和操作產生
		影響。
漏極保護電路	在共漏極配置中,	優點:
	MOSFET 串聯連接,其	· 可以獨立控制 FET,
	漏極相互連接,並且	控制機制單純。
	MOSFET 的源極端子形	・由於需要單獨的柵極
	成保護電路的內部和外	驅動器來驅動。
	部。MOSFET 的這種配	MOSFET,因此安全
	置也可以稱為背對背配	性更高。
	置。	缺點:
		・需要一個高級昂貴的
		電荷泵來驅動兩個
		MOSFET °
		• 設計複雜。
獨立的充電和放	在這種類型的拓撲中,	優點:
電端口	電池充電器和負載端口	· 由於路徑阻力較低,
	是分開的。這種拓撲通	不易發熱。
	常在以下情況下使用:	· 成本較低,僅需更少
	• 充電電流和放電電流	MOSFET °
	不同(充電電流通常	缺點:
	本内 (允电电流通讯 遠低於放電電流)。	• 安全性較性,因可輕
	• 充電時電池與負載分	鬆繞過反極性保護。
	能。 能。	• 源極拓撲只能用在高
		側,而漏極拓撲可以
		用在低側。

● 電池組保護功能

如儲能等大型電池系統,足夠的保護設計需求乃是重中之重,一般而言啟動階段負載浪湧電流保護,以及系統運作中的即時短路保護 都是必須實現的安全設計,其細部相關說明如下:

表5、保護功能及解決方案

功能方案	說明
負載浪湧電流保護	啟動期間會出現浪湧電流,主要是在電池首次 連接到負載時。由於過流或短路警報的錯誤指 示,浪湧電流可能會變得足夠高,從源電流限 制電路限制開機階段的浪湧電流並保護電池和 負載。當滿足以下任一條件時,就需要預充電 電路: ·負載具有較高的輸入電容,會被浪湧電流損 壞。 ·如果導通電流超過保險絲的極限,主保險絲 就會熔斷。 ·接觸器將被浪湧電流損壞。 ·超過解於 ·超過解 ·超過解於 ·過 ·過 ·過 ·過 ·過 ·過 ·過 ·過 ·過 ·過 ·過 ·過 ·過
短路保護	在短路情況下,MOSFET 不僅必須承受電流的上升,而且還必須承受關斷期間雪崩電流的可能性。檢測故障並斷開電池或負載的 MOSFET 和電路稱為電子保險絲。由於短路期間 MOSFET 需要快速關斷,因此可能會發生電子保險絲熔斷。反過來會導致短而高的電流脈衝流入電感,電感是由連接電池組和負載的電線以及負載本身產生的。而寄生電感可以感應足夠的電壓,導致 MOSFET 發生雪崩電流,從所將負載的電感轉變為電壓發生器,使保護解決方案上的電壓升高到超過最大允許電壓。

參考資料

- 1. https://www.infolink-group.com/energy-article/tw/A-look-at-safety-for-energy-storage-systems
- 2. https://www.synst.com.tw/zh-tw/a3-2084/%E4%BF%9D%E8%AD%B7%E9%9B%BB%E8%B7%AF.html
- 3. https://www.edntaiwan.com/20210517ta71-choose-the-right-protection-for-your-circuit/
- 4. https://www.infineon.com/cms/en/applications/solutions/battery-management-system/industrial-and-consumer-bms/battery-protection/#!trainings
- 5. https://www.eettaiwan.com/20221026ta31-circuit-protection-when-one-plus-one-is-more-than-four/
- 6. https://www.powerctc.com/zh-hant/node/4488

- 7. https://www.powerctc.com/zh-hant/node/5508
- 8. https://www.deltaww.com/zh-TW/news/energy-storage-security
- 註:1.請計畫執行單位上傳提供較具策略性的知識物件,不限計畫執行有關內容。
 - 2.請計畫執行單位每季更新與上傳一次,另有新增政策建議可隨時上傳。
 - 3.文字精要具體,量化數據盡量輔以圖表說明。