知識物件上傳表

國別					
(單	□1.國內 ■2. 國外:	(美國)			
選)					
能源	□1.政策與法規 □2.環境	竟衝擊與調適 📗	3.經濟及產業 ■4. 科技		
領域	5.統計資訊				
能源 業務	□1.總體能源 □2.化石創		【4.新及再生能源 □5.節約能源		
決策	□1.建言 (策略、政策、打		14 <i>24 1</i> 4 17 17 17 17 17 17 17 17 17 17 17 17 17		
知識	■2.評析 (先進技術或方)				
類別	□3.標竿及統計數據:技 □4.其他:	何或力法、産業	· 巾场等翅對分析		
計畫					
日母名稱	太陽光電發電設備高值化	上評價技術服務			
主題	上阳少雨久从南入山田水	9 安秋 17 か			
名稱	太陽光電系統安全法規與	特員證研究			
資料	109年5月18日				
時間	109年3月10日				
	台灣近年來對環保意識的	的抬頭及對綠能的	勺重視,太陽光電已發展成為發電與創能產業的		
	重點。太陽能系統於各大公司、園區及住宅的安裝日趨普遍且持續成長。但由於日前在				
	美國蘋果公司、沃爾瑪莉	迢商接連傳出太 阳	易能系統的火災意外;在國內也發生多起火災因		
	為屋頂設有太陽能系統造成消防隊員救災困難,民眾對太陽能系統安全性的隱憂也因此				
	漸漸加深。				
	本計畫之「太陽光電系統火災案例分析研究報告」,以模組燃燒特性、火災成因分析、				
重點	救火風險及火災風險防範四大主軸出發,將探討包含:				
摘述					
	1. 太陽光電系統的不同元件由於其聚合物含量而可燃造成火災之規模。				
	2. 統計分析火災成因,作為避免火災之源頭管理或法規設計之依據。				
	3. 根據文獻,提供在太陽光電系統火災狀況下出現之電、毒、坍塌風險評估,藉此了解				
	各類救火風險及量化風險等級。				
	4. 如何降低火災風險之致	建議,包含元件	防火測試、安全系統運作 、滅火設計要求相關		
	文獻研究。				
關鍵字	太陽光電系統火災案例分	分析研究報告			
作者	林家任	建檔機構	工研院量測中心		
聯絡	03-591-4000	聯絡 Email	allenlin0610@itri.org.tw		
電話	03 371 1000	*// WU Elliali	uncimilio 10 (Granoi g.e.)		
	2018年,美國政	. 府翻譯了由	German Federal Pariamen, TÜV Rheinland 及		
詳細	Fraunhofer ISE 共同著	作之「評估太陽	光電系統中的火災風險並製定安全概念以最小		
說明	化風險」 (Assessing Fire Risks in Photovoltaic Systems and Developing Safety Concept				
	for Risk Minimization)之研究報告,報告中詳細分析了模組燃燒特性、火災成				

析、救火風險及火災風險防範等主題,對於如何降低火災風險之研究分析,此資料為 非常寶貴之參考文獻。

本研究報告中,對德國發生火災或燒毀的太陽能系統做了一些統計與分析。圖 1 是故障原因統計分析,統計了 103 個案例,其中大部份是安裝過失 (39 件) 與產品 瑕疵 (36 件)。圖中斜線陰影部份是使用鋁芯電線的案子,歸類為安裝過失或設計過 失。因為鋁芯線比較便宜,所以很多人用來取代銅線降低成本,但是鋁的熔點比銅 低,當壓接或接觸不良而造成高溫時,鋁芯比較快熔融而造成更大的風險。

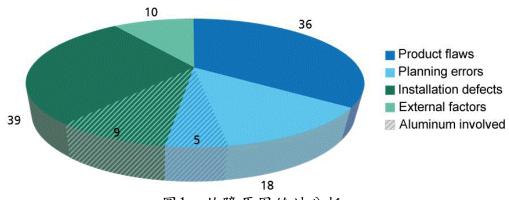
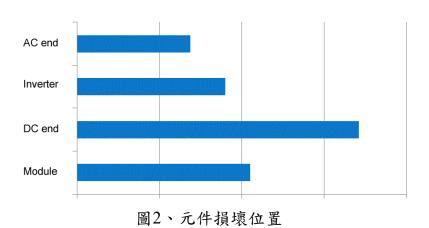



圖1、故障原因統計分析

圖 2 統計 174 個因火災而元件受損案例的元件位置,可以發現 DC 端的損壞最多,但是 AC 端的故障率也意外的高。雖然看數字是低於 DC 端元件,但是 AC 端元件數量比 DC 端少很多(大約 1/10 的程度),而且 AC 的技術人員通常受過比較嚴謹的訓練,這麼高的故障率讓人意外。另外特別說明,這裡所列的是燒毀受損的元件,但受損元件未必就是火災的原因。

除了火災成因分析外,報告中也提供了救火員之風險研究,包含吸入毒氣、焦慮發作、蔓延、原子輻射、爆炸、電氣、坍塌等風險評估,並量化風險等級如圖3。

Always
Probably
Never 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Never 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Never 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Never 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8
No consequences Low Moderate High Extreme case (death)
No conse Low Moderate High Extreme of (death)
Consequences (C)

The risk group 1-2 3-6 8-32 can be directly read off the intersection of probability of occurrence (P) and consequences C in the matrix.

Risk group	Risk	Measures
8 - 32	Large	Measures with increased protective effects are urgently required
3-6	Moderate	Measures with increased protective effects are urgently required
1- 2	Low	Organizational and personal measures suffice
0		No additional measures necessary

圖3、風險等級之量化

最後,此次報告中也說明如何降低火災風險之建議,包含元件防火測試、安全系統運作、滅火設計要求。造成火災的因素太多太廣,從設計、選材、到安裝、維運都有許多需要注意的事項,系統安裝者必須盡可能注意所有細節。在系統驗收與維運定期測試時,建議如下:

- 1. 進行 IEC62446-1的測試,可以檢測出大部分的問題。包括接地連續性、絕緣測試、 濕絕緣測試等。
- 2. 在模組安裝完成後抽測 EL,確認模組內沒有大量隱裂。不過只在安裝後測試,無法確認隱裂是模組本身就有或安裝過程造成,因此最好在模組上架安裝前再做一個抽測,以便釐清責任。
- 3. 系統併網後進行 IR 檢測,可找出系統的局部發熱點,及早排除故障問題,定期檢查和維護可以防止更嚴重的損壞。

4. 滅火設計要求:

在許多情況下,消防員可以通過未被太陽光電覆蓋的屋頂的後半部分(通常是北半部分)進入屋頂結構,然後從那裡救火,使其遠離帶電系統部件。如果兩個屋頂都被佔用,例如朝東的屋頂,則必須使用其他屋頂出入選項。其他可能的通道是通過天

窗或山牆窗。這些窗戶必須具有適合作為救援路線的所謂「必需窗戶」的尺寸,並且便於救援人員使用。根據《模型建築規範》,此類窗戶的最小尺寸為 90 公分的淨寬和120公分的淨高。如果既不能通過後部的屋頂區域也不可以通過窗戶進入屋頂結構,則必須保留屋頂 的適當局部區域。對於救援人員來說,寬度至少為 1 公尺的防火中斷已經對滅火工作有所幫助 (圖 4)。

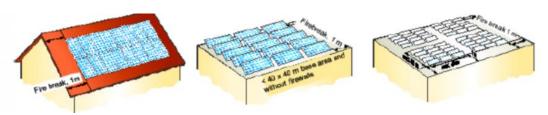


圖4、滅火設計需考慮屋頂結構

目前美國、德國、日本皆要求需要於安裝太陽光電系統的建物中之剖面圖,如圖 5,可使一般使用者、維運人員、安裝商及消防員了解建築物中太陽光電系統在救災的 過程中可能導致的危害。

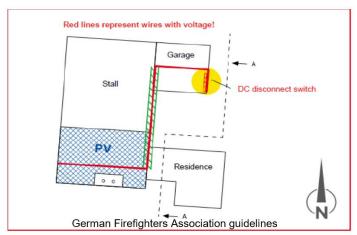


圖5、德國安全標示規範示意:太陽光電系統之直流接線線路需標示

依照消防要求、高品質模組的使用和正確安裝的計劃,可以大幅降低太陽光電系統中的火災風險。雖然不能排除在運行時間內因觸點老化而引起的過熱,但通常只會在使用很長久的時間後很偶然的發生。定期檢查和維護可以防止嚴重的損壞,例如在風暴或地震等特殊事件之後的檢查。對於特殊的安裝情況,帶有關閉裝置的電弧探測器可以提供額外的安全性。如果保持安全距離及符合減火設計要求,太陽光電系統不會對消防員造成特殊危險,就像其他帶電系統一樣。