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1. Introduction

Electricity load forecasting is key to effective 

operation and planning of power systems. The 

forecasting accuracy has significant impacts on 

electric utilities and regulators. Overestimation 

of electricity demand will lead to conservative 

operation, where too many startup units supplying 

unnecessary level of reserve or substantial poor 

investment in power facilities. Conversely, 

underestimation may result in a risky operation and 

unmet demand and make the system vulnerable 

to disturbance. Electricity power generated from 

power plants or independent generators is difficult 

to be effectively stored with today’s technology. 

An accurate load forecasting to provide favorable 

references is thus essential for ensuring stable 

national economy.

The issue of power supply has received 

more and more attention with increasing power 

demand for economy growth. Renewable energy 

has been the focus in pursuing sustainable 

future. However, renewable capacity additions 

cause several challenges: increasing power grid 

complexity for energy distribution, volatile load 

swings, frequency and voltage for management 

that require fast reacting grid control and adaptive 

assets. An accurate short-term load forecasting 

is therefore important to balance the demand and 

supply sides. Load forecasting is usually concerned 

with the prediction of hourly, daily, weekly, and 

annual values of the system demand and peak 
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demand.  Such forecasts are sometimes categorized 

as short-term, medium-term, and long-term 

forecasts, depending on the time horizon. In terms 

of forecasting outputs, load forecasts can also be 

categorized as point forecasts (i.e., forecasts of the 

mean or median of the future demand distribution), 

and density forecasts (providing estimates of the 

full probability distributions of the possible future 

values of the demand). Long-term forecasts usually 

require more than merely an extrapolation of the 

seasonality or trend evident in the historical data. A 

forecasting tool can not only derive a forecast from 

outside explanatory variables, such as economic 

or demographic information, but also help account 

for changes in the historical data and be a predictor 

in the forecast period. For instance, in electric load 

forecasting, short-term forecasts are influenced by 

weather conditions (driving air conditioning loads 

and heating use), whereas long-term forecasts are 

dominated by economic development and political 

decisions (building offshore wind parks yields 

different load distributions than those yielded by 

power plants). The forecasting model presented 

in this paper is suitable for short-term forecasts; 

therefore, there are few available socio–economic 

variables, which are different from the variables 

used in most methods that are used for long-term 

forecasts. There is no common basis to compare 

the prediction performance of models. Even 

for short-term forecasts, it is difficult to predict 

electrical loads because of many influencing 

social, weather, and seasonal factors. Social factors 

include human activities such as attending work or 

school, and they may affect the electricity supply. 

Weather factors include temperature and humidity, 

and these influence residential load. Seasonal 

factors include the trend of the four seasons and 

yearly power demand growth. The production 

of too much energy is wasteful and increases 

operational cost. Conversely, the insufficiency 

of electricity directly and severely affects the 

national economy. Thus, a robust short-term load 

forecasting model is crucial to precisely dispatch 

power during transmission and distribution.

In recent year, the issue of power supply has 

received more attention with increased power 

demand on renewable energy. However, the 

addition of renewable energy capacity can face 

challenges in the complexity of distributed energy 

systems. Yet expanding total generator capacity 

is difficult due to the limitation of resources 

and land development. With the deregulations 

of energy industries, a robust electricity load 

forecasting model is necessary to effectively strike 

the balance between power demand and supply, 

and is also essential for making decisions that 

prevent overloading. It also provides references on 

optimally scheduling electricity energy resources 

in advance by predicting future demand of one-

day or one-week ahead. Recent reviews on energy 

forecasting provide detailed accounts of the 

existing forecasting models and their classification. 

Zhao and Magoules (2012) reviewed the existing 

methods for building energy consumption 

prediction into five categories. Hippert et al. (2001) 

presented a review on short-term load forecasting.  

Suganthi and Samuel (2012) presented a review 

on energy demand models for demand forecasting. 

Fumo (2014) presented a review on building 

energy estimation and also studied now estimation 

models are classified. Martinez-Alvarez et al. 

(2015) presented a survey on data mining for time 

series forecasting of electricity. Qamar Raza and 

Khosravi (2015) presented a review on short-term 

load forecasting techniques based on artificial 

intelligence (AI) techniques. A recent study by Mat 

Daut et al. (2017) presented a review on building 

electrical energy consumption forecasting analysis 
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using conventional and AI methods (Ahmad et 

al., 2014; Wang & Srinivasan, 2017; Deb et al., 

2017). All these reviews provide vital information 

on energy forecasting models on different scales 

and summarize the performance of the models. 

A forecasting model can either be based on static 

data that usually fits a dependent variable to a set 

of independent variables, or it can make use of a 

single or parallel time series data.

Data  analyt ics  by  applying ar t i f ic ia l 

intelligence is said to revolutionize all knowledge-

based aspects. Many prediction techniques in either 

linear techniques such as autoregressive moving 

average (ARMA) and autoregressive integrated 

moving average (ARIMA) (Ohtsuka et al., 2010; 

Huang & Shih, 2003), or nonlinear techniques 

such as artificial neural networks (ANNs) and 

genetic algorithm (GA) have been proposed in 

literature for forecasting electricity load (Chuang 

et al., 2013; Sarangi et al., 2009; Yalcinoz & 

Eminoglu, 2005). Ohtsuka et al. (2010) applied 

a regressive Bayesian spatial ARMA model to 

forecast regional electricity consumption in Japan. 

Narayan and Smyth (2005) showed that electricity 

consumption, employment, and real income are 

cointegrated in Australia. Erdogdu (2007) proposed 

an ARIMA model with cointegration analysis for 

electricity demand forecasting in Turkey. Many 

works have been using ARIMA model for time 

series analysis, and the key lies in its inherent 

statistical characteristics. As a result of linear 

correlation structure among the time series, no 

nonlinear pattern can be captured by the ARIMA 

model. The intrinsic complexity of electrical loads 

and the nonlinearity of the power systems may 

require better forecasting methods (Ferreira & Da 

Silva, 2007). Chuang et al. (2013) compared the 

short- to long-term load forecasting accuracy of 

univariable and multivariable ARIMA and ANN 

models and showed that energy consumption and 

the amount of exports are the two essential factors 

for predicting short-term energy consumption. 

Yalcinoz and Eminoglu (2005) modeled mid-term 

load forecasting (MTLF) in monthly forecast step 

and short-term load forecasting (STLF) in daily 

forecast step using multi-layered perceptron neural 

network. Ferreira and Da Silva (2007) extended the 

support vector machines learning algorithm in an 

autonomous ANN-based electric load forecasters.

In recent years, several studies of hybrid 

models have been implemented in load forecasting. 

Kavousi Fard and Akbari-Zadeh (2013) proposed 

a hybrid correction method integrating ARIMA 

model, wavelet transform and ANN to reach 

reliable load forecasting model. Khashei and Bijar 

(2011a) proposed a hybrid of ANN and ARIMA 

model for time series forecasting. In spite of all 

the above research, there is yet notable prediction 

error due to periodic, nonlinear and chaotic load 

data. In fact, it is time-consuming to analyze 

different characteristics of load data in real power 

systems. To overcome this situation, the seasonal, 

hybrid methodology that includes both linear and 

nonlinear short-term load modeling techniques can 

be pragmatic.

This paper proposes an integrated ARIMA-

ANN seasonal method to process the strong 

seasonality and periodic characteristics of load 

data. An ARIMA model assumes that the present 

data are a linear function of past data and residuals, 

and it has been a popular linear model in time 

series prediction of energy price (Tan, et al., 

2010), energy consumption (Do, et al., 2016), 

water quality (Faruk, 2010) and airline passenger 

forecasting (Chen, et al., 2012). It is effective when 

the time series is stationary without missing data 

and with a strong linear characteristic; however, it 

is futile to data with nonlinearity. By comparison, 
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ANN with interconnected artificial neurons can 

reflect the nonlinear input and output by the 

parallel-distributed processors (Liu, et al., 2013). 

ANNs have been applied to model economic 

indicator and weather factors (Do, et al., 2016) and 

load forecasting (Ekonomou, 2010). Real-world 

time series are rarely pure linear or nonlinear. 

Hence integrating ARIMA and ANN model for 

time series forecasting have been shown better 

than any individual ARIMA model or ANN model 

(Zhang, 2003; Khashei & Bijar, 2011b). A seasonal 

integrating model based on ARIMA and ANN is 

proposed in this work to treat data with periodic 

and seasonal properties. By selecting suitable input 

variables, including historical daily electricity load 

data, weather data and holiday effect variables, the 

integrating model is shown effective for electricity 

load forecasting.

2. ARIMA and ANN Model

2.1 �Autoregressive Integrated 
with Moving Average 

The stationarity of a stochastic process 

for time series analysis can be described in two 

senses—strict or strong and wide or weak. For 

practical purposes, the second is of interest to 

us, in which the stationarity is characterized by 

the following properties: the expected values or 

means of the random variables do not depend on 

time (are constant), the variances do not depend 

on time either and are finite and, the covariances 

(the autocovariance) between two different periods 

of time only depend on the time lapse between 

these two periods (Chavez, et al., 1999). Their 

mathematical expressions are respectively 

E( y(t)) = E( y(t + k)) for all k		           (1)

Var( y(t)) = Var( y(t + k)) for all k	          (2)

Cov( y(t), y’(t)) = Cov( y(t + k), y’(t + k))      (3)

If the predictions are performed in non-stationary 

time series, and the problem of spurious regression 

is often generated in model estimation. Since 

ARIMA can only be used in stationary time series 

data, it is often necessary to convert non-stationary 

data into stationary data.

Decomposition of time series is an important 

technique for all types of time series analysis, 

especially for seasonal adjustment. It seeks 

to construct, from an observed time series, a 

number of component series (that could be 

used to reconstruct the original by additions or 

multiplications) where each of these has a certain 

characteristic or type of behaviour. For example, 

time series are usually decomposed into: T(t) 

is the trend component at time t, which reflects 

the long-term progression of the series (secular 

variation). A trend exists when there is a persistent 

increasing or decreasing direction in the data. 

The trend component does not have to be linear. 

C(t) is the cyclical component at time t, which 

reflects repeated but non-periodic fluctuations. 

The duration of these fluctuations is usually of at 

least two years. S(t) is the seasonal component at 

time t, reflecting seasonality (seasonal variation). 

A seasonal pattern exists when a time series is 

influenced by seasonal factors. Seasonality occurs 

over a fixed and known period (e.g., the quarter 

of the year, the month, or day of the week). I(t) is 

the irregular component (or noise) at time t, which 

describes random, irregular influences. It represents 

the residuals or remainder of the time series after 

the other components have been removed. Hence a 

time series using an additive model can be thought 

of as
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y(t) = T(t) + C(t) + S(t) + I(t),	          (4)

whereas a multiplicative model would be

y(t) = T(t) × C(t) × S(t) × I(t).	          (5)

An additive model would be used when the 

variations around the trend does not vary with the 

level of the time series whereas a multiplicative 

model would be appropriate if the trend is 

proportional to the level of the time series. 

Sometimes the trend and cyclical components 

are grouped into one, called the trend-cycle 

component. The trend-cycle component can just be 

referred to as the trend component, even though it 

may contain cyclical behavior.

For an autoregressive integrated with moving 

average model, the notation AR( p) model refers 

to the autoregressive model of order p. The future 

value of a variable is assumed to be a linear 

function of the past observations and random 

errors. The output data y(k) at any given time k is 

written

(6)

where Ø1, ...Øp are the model AR( p) parameters, c 

is a constant, and the random variable ε(k) is white 

noise. The notation MA(q) refers to the moving 

average model of order q:

(7)

where θ1,…θq are the parameters of the model 

MA(q), μ is the expectation of y(k) and the ε(k), 

ε(k  ‒  1), …, ε(k  ‒  i) is white noise error. The 

notation ARMA( p, q) refers to the model with p 

autoregressive terms and q moving-average terms,

 

(8)

or

y(k) = �c + Ø1 y(k ‒ 1) + Øp y(k ‒ p) + ε(k) +  

θ1
 ε(k ‒ 1) + ... θq

 ε(k ‒ q)	          (9)

An ARIMA process generates a nonstationary 

series of order D is denoted I(D), where the 

nonstationary process can be made stationary by 

taking D differences is the so called difference-

stationary or unit root processes. A stationary 

ARMA( p, q) process after differenced D times 

is denoted by ARIMA( p, D, q). The form of the 

ARIMA(p, D, q) model is

∆D y(k) = �c + Ø1 ∆
D y(k ‒ 1) + Øp ∆

D y(k ‒ p)  

+ ε(k) + θ1
 ε(k ‒ 1) + ... θq

 ε(k ‒ q)     (10)

where ∆D y(k) denotes a Dth difference time series. 

In lag operator notation Biy(k) = y(k  ‒  i), the 

ARIMA( p, D, q) model becomes

Ø*(B)y(k) = Ø(B)(1 ‒ B)D y(k) = c + θ(B)ε(k)  (11)

where Ø*(B) = Ø(B)(1 ‒ B)D is an unstable AR 

operator with D unit roots, Ø(B) = 1 ‒ Ø1(B) ‒ … ‒ 

Øp B
p is a stable degree p AR lag operator (with all 

roots lying outside the unit circle), and similarly,  

θ(B) = 1 + θ1(B) + … + θq B
q is an invertible degree q 

MA lag operator.

Many t ime  se r ies  exh ib i t  a  seasona l 

trend, meaning there is a relationship between 

observations made during the same period in 

successive period. In addition to this seasonal 

property, there can also be a relationship between 

observations made during successive periods. The 

multiplicative ARIMA model is an extension of 

the ARIMA model that addresses seasonality and 

potential seasonal unit roots. For a series with 

periodicity s, the multiplicative ARIMA( p, D, q) ×  

( ps, Ds, qs)s is

Ø(B)Φ(1 ‒ B)D (1 ‒ B s)D y(k) = c + θ(B) Θ(B) ε(k)	

(12)

where the stable, degree p, AR and Φ(B) is a stable, 

y(k) = c + ø i

p

i = 1
y(k i) + (k )

y(k) = + i

q

i = 1
k i)µ + (k )

y(k) = +
p

i = 1
c + (k ) ø i y(k i)

i

q

i = 1
k i)+
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degree ps, AR operator. The seasonal ARIMA can 

be expressed as SARIMA( p, D, q) × ( ps, Ds, qs)s .

An iterative three-stage ARIMA model 

includes model identification, parameter estimation 

and diagnost ic  checking (Box & Jenkins, 

1976). In model identification stage, when the 

observed time series presents trending and 

heteroscedasticity, transformation, differencing 

and seasonal differencing are applied to the data 

to remove its trend and stabilize the variance 

before fitting data into an ARIMA model. In 

model parameters estimation, the order can be 

identified by observing an autocorrelation function 

and a partial autocorrelation function. By using 

the maximum likelihood estimation, the ARIMA 

parameters can be determined to best fit the load 

data characteristics. In diagnostic checking, the 

residuals are assumed to follow the assumptions 

for a stationary unit root process in white noise 

drawings from a fixed distribution with a constant 

mean and variance. If these assumptions are not 

satisfied, one needs to go back to the first stage to 

fit a more appropriate model.

2.2 �Artificial Neural Network (ANN)
An artificial neural network consists of 

simple nodes with high interconnections, called 

neurons, and each carries an activation function for 

transferring the input signals as illustrated in Figure 

1(a). The transfer function f is for converting the 

weighted summation to get the output value. The 

schematic diagram of a three-layer ANN is shown 

in Figure 1(b), in which the input signals are 

passed from the input layer to the hidden layer, and 

then to the output layer. A traditional perceptron 

model can be used as activation function to solve 

linear classification, but load prediction belongs to 

linear inseparability most of the time. Hamzacebi 

(2007) used the sigmoid function as activation 

function in the hidden-layer to handle linear 

Fig. 1. �(a) The structure of an artificial neuron and (b) the schematic of a feedforward neuron network 
model (by authors).
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inseparability problem. This work applies back-

propagation network (BP). Xiao et al. (2009) 

proposed to integrate BP and rough set for short-

term load forecasting. Steepest descent method 

is also commonly used in BP network (Su et al., 

2011) with slower convergence. Catalao et al. 

(2007) proposed Lavenberg-Marquardt Algorithm 

(LM) as the training algorithm to achieve faster 

convergence for a three-layer feed-forward 

neural network when predicting one-week ahead 

electricity price with more accurate results. 

The relation between the output y(k) and the 

input y(k ‒ 1), y(k ‒ 2), ..., y(k ‒ P) is:

 

(13)

where wij (
 i = 0, 1, 2, …, P, j = 1, 2, …, Q) and wj (

  j = 

0, 1, 2, …, Q) are the model parameters often called 

the linking weights, α(k) is random error, P is the 

number of input nodes, and Q is the number of 

hidden nodes. The sigmoid function is the hidden 

layer transfer function,

g(x) = [1 + exp(‒x)]‒1			         (14)

where x is the input. An ANN model performs a 

nonlinear operative mapping from the previous 

observations to the future value y(k) by a function 

f defined by the network formation and correlation 

weights.

y(k) = f ( y(k ‒ 1), y(k ‒ 2),…, y(k ‒ P), W ̃   ) + α(k)

(15)

where W ̃  is a vector of all parameters. Simple 

network framework with a small number of hidden 

layer neurons often performs well in out-of-sample 

forecasting. To avoid over-fitting, the network 

should not input too many free parameters, which 

may allow the network to fit the training data well, 

leading to poor generalization.

3. The Integrated Seasonal 
ARIMA–ANN Model

The SARIMA model, as an extension of 

the ARIMA model, is the linear approach for 

predicting future time-series to improve prediction 

accuracy by removing the characteristics of 

seasonal variation through seasonal differences. 

For example, electricity load series shows a strong 

seasonality on weekly order, and may observe 

some disturbance due to temperature fluctuation, 

weather condition, and/or holidays. In this study, 

the SARIMA model can be implemented to 

remove the characteristics of seasonal variation 

and to improve the prediction accuracy of future 

electricity load.

Both ARIMA and ANN models have achieved 

successes in linear and nonlinear forecasting 

domains respectively; however, neither is a 

universal model suitable for all circumstances. In 

real world, the given data may have both linear and 

nonlinear components,

y(k) = L(k) + N(k)			          (16)

where L(k) denotes the linear and N(k) the 

nonlinear component. Assume that the linear 

and nonlinear patterns exist in a system can be 

modeled separately, and the relation between linear 

and nonlinear components is addictive. An ARIMA 

model is well defined and the residuals carry only 

the nonlinear relationship. The seasonal integrated 

ARIMA–ANN model is shown in Figure 2. Instead 

of decomposing data into linear and nonlinear 

components, real load data of the past are directly 

fit into linear ARIMA model in the first stage 

with the advantage of effectively identifying and 

magnifying existing the linear structure in data. 

The residuals of past data e(k ‒ 1), e(k ‒ 2), …, e(k ‒ 

p) obtained from the linear model are the nonlinear 

y(k) = +
Q

j = 1
+ (k)wj gw0 +

P

i = 1
wij y(k i)w0j(                      )
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components. Since ARIMA cannot be utilized 

to produce an accurate model for forecasting 

nonlinear time series, load data can be express as 

the sum of linear and nonlinear components,

L ̂   (k) = y(k) ‒ e(k)			          (17)

where the cap notation indicates the forecast value. 

The residuals should pass the diagnostic statistics 

and show no linear correlation left in the residuals.

In the second stage, ANN is used model 

nonlinear part and probable relationships existing 

in residuals and nonlinear components of the 

original data.

N ̂   (k) = �h(e(k), e(k ‒ l), …, e(k ‒ l ), z(k), z(k ‒ l), 

…, z(k ‒ m), zs(k) zs(k
 ‒ l), … , zs(k

 ‒ n), 

L ̂   (k), p(k))			          (18)

where h(k) is the nonlinear function determined by 

the neural network, e(k) is the residual from time 

step k to to k ‒ l, and z(k) and zs(k) are the non-

seasonal and seasonal differencing operator from 

time step k to k ‒ m and time step k to k ‒ n. Here s 

notation indicates the seasonal term, and l, m, and 

n are numbers of steps for each term. The last input 

for non-linear function, p(k), includes weather 

variables and holiday effect variable of time step k.

z(k) = ∆d ( y(k) ‒ μ)			          (19)

zs(k) = ∆s
D ∆d ( y(k) ‒ μ)		         (20)

where d and D are non-seasonal and seasonal 

differencing order. In this stage, two examples are 

provided to compare the performance with the 

proposed ARIMA-ANN model in next section. 

One is the Zhang’s (2003) ARIMA-ANN model, 

where ANN is used model nonlinear part and 

probable relationships existing in residuals and 

nonlinear components of the original data, N ̂   (k) =  

h(e(k), e(k ‒ l), …, e(k ‒ l ), p(k)). In the Khashei 

and Bijar’s (2011b) ARIMA-ANN model, the 

nonlinear function determined by the neural 

network is N ̂   (k) = h(e(k), e(k ‒ l), …, e(k ‒ l ), z(k), 

z(k ‒ l ), …, z(k ‒ m), L ̂   (k), p(k)).

The proposed seasonal  hybr id  model 

integrates two algorithms for prediction: the 

seasonal ARIMA for the linear part of electricity 

load forecasting and the ANN for the residuals. 

Several past residuals steps, non-seasonal 

input
variables 
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Fig. 2. �The proposed model integrating ARIMA and ANN for the strong seasonality and periodic 
characteristics in electricity load forecasting (by authors).
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differencing terms and seasonal differencing terms 

are selected, where the number of steps for each 

term is determined by trial and error and empirical 

research as the input to the ANN model. The 

additional factors are weather variables and holiday 

effect variable, and the output from the ANN can 

be used as the forecast values of the nonlinear part 

and be added onto the linear results obtained from 

ARIMA model.

y ̂   (k) = L ̂   (k) + N̂   (k)			          (21)

4. Technical Analysis

Figure 3(a) is the load series over 730 days in 

2015 and 2016, and Figure 3(b) displays the load 

fluctuation over 31 days in March 2016, where the 

electricity load series shows a strong seasonality 

of weekly order. The disturbance may also include 

temperature fluctuation, weather condition, and 

holiday effect. In this study, seasonality is chosen 

as s = 7 as shown in Eq. (11), since electricity 

load series shows a strong weekly seasonality. 

Thus the seasonal ARIMA model is determined 

as SARIMA p = 1, D = 1, q = 1, p7
 = 1, D7

 = 1, q7
 

= 1. To comprehensively model the load data, 

there are three important factors in electricity 

load forecasting: daily maximum temperature of 

major cities, daily precipitation of major cities and 

holiday effect variables. It cannot be denied that the 

daily maximum temperature in a subtropical zone 

is most important to influence the power usage 

of air conditioner, which significantly influence 

the total electricity load. The second factor, daily 

precipitation, indirectly affects the local electricity 

demand. If one considers the extreme weather 

Fig. 3. (a) Daily electricity load in year 2015 and 2016 and (b) in March, 2016 (by authors).
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condition, such as typhoon, the economic activities 

may result in different load profiles. The last one 

is the holiday effect variable critical to national 

economic activities. The above three factors are 

selected as the inputs to an integrated seasonal 

electricity load forecasting model.

Data with 882 observations from the period of 

2015/1/1 to 2017/5/31are provided by the Taiwan 

Power Company. Consider five distinct periods 

of time: the normal summer week, the normal 

winter week, the 3- /4-day holiday week, the long 

holiday week, and the extreme weather condition 

week. The out-of-sample approach is selected to 

test the forecasting accuracy. Of those 882 data, 

only length of 730 data are selected to train the 

model for forecasting daily load of the next day 

and the following week. The prediction results are 

validated by the real load. Consider the integrated 

model of SARIMA p = 1, D = 1, q = 1, p7
 = 1, D7

 = 1, 

q7
 = 1 and a nine input neurons, eight hidden layer 

neurons and one output neuron [9-8-1] ANN. With 

9 input variables, including four daily weather 

variables, which are Taipei highest temperature 

(T1), Kaohsiung highest temperature (T2), Taipei 

precipitation (P1), and Kaohsiung precipitation 

(P2), one dummy variable for holiday effect and 

four historical variables, which are residuals of k 

‒ 1, differencing terms of k ‒ 1, k ‒ 2 and seasonal 

differencing terms of k ‒  1. Both linear and 

nonlinear models have been applied to these data 

sets, and the performance of the proposed model 

will be compared with ANN, ARIMA, SARIMA, 

ARIMA-ANN model, Zhang (2003) and Khashei 

and Bijar (2011b).

The results of one-day ahead and one-week 

ahead in five conditions are shown in Figure 4 

and 5. In normal summer week and the normal 

winter week, the data has strong linear relation 

and ARIMA model has better performance than 

ANN. While in the 3- /4-day holiday week and the 

long holiday week, the data has strong non-linear 

relation and instead the ANN model has better 

performance than ARIMA. With strong weekly 

seasonality for the electricity load as shown in 

Figure 3, the SARIMA-ANN model has best 

performance than ARIMA-ANN. The integrated 

SARIMA-ANN model can accommodate on 

modeling both linear and nonlinear properties, thus 

outperforms the other models with smaller errors 

in forecasting.

The performance of the proposed model on 

electricity load forecasting is validated by the 

five models: ANN, ARIMA, SARIMA, ARIMA-

ANN model, Zhang (2003) and Khashei and Bijar 

(2011b), as given in Table 1 and 2. The Mean 

Absolute Percentage Error (MAPE) and Root 

Mean Squared Error (RMSE) are employed as 

performance indicators. 

(22)

(23)

where n is the number of observed data, yi is the 

real value and y ̂  i is the forecast value. The proposed 

model has the best performance over these models 

for all of the five interested conditions. In normal 

summer week, this work outperforms the other five 

models with RMSE = 1, while the other models 

have RMSE = 13, 6, 6, 37, 8 and 7, respectively. 

All of the above simulation results show that 

the integrated seasonal autoregressive integrated 

moving average and neural network model has 

better performance in modeling, prediction and 

forecasting.

5. Conclusions

1. �Accurate electricity load forecasting is important 

MAPE =
1
n

(yi y1 / yi

n

i =1
)^

RMSE = 1
n

2n
i =1(yi y1)^
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Fig. 4. �One-day ahead electricity load forecasting in five conditions: (a) normal summer week, (b) normal 
winter week, (c) long holiday week- Chinese New Year, (d) 3-day/4-day holiday week and (e) 
extreme weather condition (by authors).
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Fig. 5. �One-week ahead electricity load forecasting in five conditions: (a) normal summer week, (b) normal 
winter week, (c) long holiday week- Chinese New Year, (d) 3-day/4-day holiday week and (e) 
extreme weather condition (by authors).
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Table 1. �One-step ahead forecasting result and performance of the proposed model and the other models – 
RMSE (GWH) (by authors)

Real data ANN ARIMA SARIMA ARIMA-
ANN

Zhang 
(2003)

Khashei 
and Bijar 
(2011b)

This work

Normal 
summer 

week

GWH 607.4 594 613.2 601.6 570.9 615.1 614 607.9

RMSE -- 13 6 6 37 8 7 1

Normal 
winter 
week

GWH 558.2 543 563.4 560.3 550.1 568.2 575.4 559.8

RMSE -- 15 5 2 8 10 17 2

Long 
holiday

GWH 421.3 445.6 491.6 441.5 452.2 469.2 460.4 444.2

RMSE -- 21 17 20 31 15 14 10

Holiday
GWH 514.8 489.6 516.1 501.5 513.4 500.1 493.1 504.1

RMSE -- 25 1 13 1 15 22 11

Extreme 
weather 

condition

GWH 548.3 613.8 695.1 603.1 597.4 637.3 585.6 557.5

RMSE -- 65 147 55 49 89 37 9

Table 2. �One-week ahead forecasting performance of the proposed model and the other models (GWH) (by 
authors)

ANN ARIMA SARIMA ARIMA-
ANN

Zhang 
(2003)

Khashei 
and Bijar 
(2011b)

This work

Normal 
summer 

week

MAPE (%) 3.9 1.3 2.7 5.8 1.2 1.4 1.1

RMSE 35 8 16 37 9 9 9

Normal 
winter 
week

MAPE (%) 3.3 1.2 1.4 5.7 1.2 1.3 1

RMSE 24 7 8 39 7 9 8

Long 
holiday

MAPE (%) 6.3 7.3 10.1 8.9 5.6 5.7 5.2

RMSE 33 46 56 45 32 33 34

Holiday
MAPE (%) 4.9 0.3 2.2 5.5 2.9 4.2 2.1

RMSE 25 1 11 35 15 22 11

Extreme 
weather 

condition

MAPE (%) 7.6 11.5 11.7 13.1 10.3 7 3.6

RMSE 63 85 92 85 68 45 26
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yet often a difficult task for decision making. 

As in many other time series, electricity load 

forecasting cannot be easily expressed in linear 

relations and/or nonlinear relations, and thus 

an integrated model is developed to generalize 

the time series in two stages: the first linear 

modeling by SARIMA and then the nonlinear 

modeling by ANN, is most successful to improve 

prediction accuracy.

2. �The integrated seasonal  model includes 

SARIMA of (1,1,1) × (1,1,1)7 with seasonality 

of 7 and one degree in each autoregressive, 

differencing, and moving average terms and a 

[9-8-1] ANN model with nine input neurons, 

eight hidden layer neurons and one output 

neuron for electricity load forecasting. With 9 

input variables, including four daily weather 

variables, one dummy variable for holiday effect 

and four historical variables, it is shown that 

the model has a mean absolute percentage error 

(MAPE) less than 3%.

3. �In regard to time series seasonality, an SARIMA 

should be selected for data with seasonal terms, 

and differencing operators should be replaced by 

seasonal differencing operators to obtain more 

accurate and robust short-term load forecasting. 

The integrated model  with a  seven-day 

seasonality SARIMA is selected to be integrated 

with ANN model. By conquering the nonlinear 

and chaotic electricity data with seasonality, the 

proposed seasonal ARIMA-ANN electricity load 

forecasting model has the best performance over 

the 5 models in references.

4. �In future work, the period of the historical 

data will be lengthened and used to provide a 

reference of the power system planning for the 

proposed model in the medium-term and long-

term load forecasting. The seasonal short-term 

forecast results will be added to the seasonal or 

annual forecasts. The prediction errors outside 

the sample will be compared to confirm that the 

proposed model in this paper is indeed superior 

to other models.
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整合自我迴歸移動平均與類神經網路於電力負載之 
預測改善

陳春志1*　游凱為2　許倢歆2　楊世銘3

摘　要

本文發展一整合季節性自我迴歸移動平均(SARIMA)和類神經網路(ANN)演算法之預測模型，

利用歷史電力負載數據、氣象數據和假日效應之變量當作輸入參數，模擬電力系統動態及電能供應

穩定性之預測。整合的SARIMA-ANN方法可用於預測顯著的季節性及周期性特徵之電力負載系統

數據。研究模擬結果顯示，此模型應用在預測能力方面比ANN模型、ARIMA模型、SARIMA模型

和ARIMA-ANN模型更有效，藉由使用此預測模型可減少技術性因子的影響並能產生更好的預測結

果。

關鍵詞：類神經網路，自我迴歸移動平均，短期負載預測
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