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1. Introduction

Wind energy will play an important role 

on the energy source for Taiwan in the coming 

future. The variation of generated power by wind, 

however, will lead to impact and uncertainty on 

the management of electricity network, power 

regulation, planning and scheduling. To deal with 

this issue, a lot of efforts have been invested into 

the development of power prediction model with 

high precision.

The prediction of wind power is complicated 

since it is affected by a lots of factors including 

the feature of wind farm, height of wind turbine 

system, nearby building and trees. Unlike the 

sunlight for photovoltaic (PV) system, the 

fluctuation of coming wind for the wind turbine 

system is much stronger. The seasonal variation 

of wind in Taiwan is obvious. The Northeast 

Monsoon would be observed each year, and strong 

wind from consistent direction is expected. In 

other months, coming wind would be much weaker 

from every direction, leading to higher difficulties 

in prediction of wind power.

The renewable energy is expected to provide 

20% of power for Taiwan in 2025. The installed 

capacity expected in 2025 is 20 GW for PV and 

5.7+ GW for wind power. For the condition that 

wind power provides less than 1% of power to 

grid system, its fluctuation and impact could be 

neglected. However, as long as the wind power 

provides more than 10% of the power to the grid, 

臺灣能源期刊　第八卷　第三期　第 235-254 頁　中華民國 110 年 9 月
Journal of Taiwan Energy
Volume 8, No. 3, September 2021, pp. 235-254

Prediction and Analysis of Wind Power by Regression and  
Neural Network Method

Ming-Hong Chen1*

ABSTRACT

The purpose of this study is to conduct the wind power prediction by the regression and neural 
network methods. Results show that smaller errors are achieved with more deleted data set in the Nonlinear 
Autoregressive (NAR) model. However, the ratio of the deleted data and raw data should be considered 
simultaneously, especially for the small wind turbine. In the case using Nonlinear Autoregressive with 
External Input (NARX) model, additional decomposed data set is employed, and the improvement is still 
achieved without the alteration of raw data. The performance of the proposed prediction model on the MW 
scale wind farm is also investigated. Results show that better performance is obtained using the NARX 
model combined with the decomposed data sets, and the resulted mean absolute percentage error (MAPE) 
is less than 5%. There is no obvious improvement (< 1%) in the prediction by using the method of wavelet 
transformation.

Keywords: wind power, prediction, regression, neural network.

Received Date: November 2, 2020
Revised   Date: April 20, 2021
Accepted Date: May 6, 2021

1 �Assistant Researcher, Mechanical and System Engineering Program, Institute of  
Nuclear Energy Research.

* �Corresponding Author, Phone: +886-3-4711400#3351, E-mail: minghongchen@iner.gov.tw



Journal of Taiwan Energy Volume 8, No. 3, September 2021236

its variation should be predicted preciously for 

regulation and management. The policy goal of 

wind power prediction is announced by the Bureau 

of Energy, Ministry of Economic Affairs in 2020 

that the error of one-hour ahead prediction should 

be less than 6.5% in 2022, 5% in 2025, and 4% in 

2030, respectively.

The commonly employed methods are 

physical, statistical and artificial intelligence (AI). 

For the physical model, geographic data will be 

introduced for the development of complicated 

model. Relatively large error was observed due to 

the required computational cost to implement the 

calculation (Safari et al., 2018). For the statistical 

method, the relationship model was built based 

on the surveyed weather data and wind power. 

This model is then employed to predict the wind 

power as the output with corresponding input 

data including the measured and forecasted 

weather information. The assumption was made 

for the commonly employed statistical model 

(autoregressive moving average (Erdem and 

Shi, 2011) and autoregressive integrated moving 

average model (Aasim and Mohapatra, 2019)) 

that normal distribution and linear relationships 

were applicable for wind power. By observing the 

actual site data of wind power, those assumptions 

might not be valid, leading to larger deviation in 

the prediction (Jiang et al., 2019). Recently, the 

AI-based algorithm was largely proposed for the 

short-term wind power prediction (Marugán et al., 

2018). Among the proposed model, the artificial 

neural network (ANN) with the capability to 

capture the non-linear relationship of the training 

data was largely employed (Zhang et al., 2016; 

Guo et al., 2011).

1.1 Literature review
Yin et al. (2019) proposed a hybrid wind 

power prediction approach by the cascaded deep 

learning model. The empirical decomposition was 

introduced to decompose the time series data into 

a set of intrinsic mode functions (IMFs). Results 

showed that the improvement was observed in the 

prediction with the proposed model. The proposed 

hybrid model performed better than the surveyed 

studies in the short-term wind power prediction. 

Ouyang et al. (2017) proposed a combined 

multivariate model to improve the accuracy of 

wind power prediction. Integrated with four trained 

data mining algorithms, the performance of the 

proposed model in the industrial data was better 

than the traditional methods. Naik et al. (2019) 

proposed a hybrid multi-objective predictive 

method for the wind power. Results showed that 

the presented model was superior on the quality of 

wind power prediction than the other single and 

multi-objective methods.

Liu et al. (2018) combined the Gaussian 

process regression and multiple imputation 

approach to deal with the issue of missing data in 

the prediction of wind power. With the proposed 

method, a new data set was generated. With the 

introduction and comparison of experimental 

data, the effectiveness of the proposed model 

was observed in the prediction of wind power 

with missing data. Yuan et al. (2017) proposed 

a hybrid autoregressive fractionally integrated 

moving average and least square support vector 

machine model for the prediction of wind power. 

Comparison via two examples with other models 

showed that the proposed hybrid model led to 

better results in terms of 3 selected performance 

indexes. Qureshi et al .  (2017) proposed a 

prediction model of wind power which integrated 

the deep neural network and transfer learning 

concept. The performance of the proposed model 

was evaluated by root mean square error (RMSE), 
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mean absolute error (MAE), and standard deviation 

error (SDE) with other methods. Better results 

were observed via the introduced performance 

evaluation indexed. Harrou et al. (2019) developed 

a model based on the bagging ensembles of 

decision trees method for the prediction of wind 

power. The performance of the proposed method 

was compared with four existing methods. Results 

showed that the highest prediction performance 

with the coefficient of determination of 0.982 was 

obtained by the proposed model. The proposed 

model would also be a useful tool to identify the 

anomaly in wind turbines.

Taslimi Renani et al. (2016) compared 

the direct and indirect way in the wind power 

prediction. By combing the mutual information 

and neural network, the feature selection technique 

was proposed in this study. Results showed that 

the proposed method outperforms the 5 compared 

algorithms. Li et al. (2018) proposed the data 

mining based wind power prediction method with 

improved support vector machine. In this study, 

the data mining method was employed to survey 

the relationship between the wind speed and wind 

power. The modification of the invalid original 

data was made afterward. The high frequency parts 

were eliminated by the wavelet transform method. 

The prediction was improved by the cuckoo search 

algorithm and the penalty factor of support vector 

machine. In the investigation of a case study, the 

proposed method was the best based on the error 

evaluation indexes. Ouyang et al. (2019) proposed 

a new method to predict the ramp of wind power. 

A primary model was developed firstly by wind 

power curve. Then the residual predicted by the 

primary model was corrected by the proposed 

Markov-Switching-Auto-Regression method. 

The improved swinging door algorithm and ramp 

definition were integrated into the proposed model. 

The performance of the proposed model was 

evaluated by a wind farm data. Results showed 

that the performance has been improved by the 

proposed numerical model on the prediction of 

wind power and ramp.

Ouyang et al. (2020) proposed a combined 

model  of  switching different  data-dr iven 

chaotic time series models. The input data was 

reconstructed based on the chaotic characteristics 

of wind power. Secondly, the wind prediction 

model was constructed by three data mining 

algorithms. Results by the proposed model 

were compared with non-reconstructed method, 

t radi t ional  method and typical  combined 

method. Results showed the improvement in the 

accuracy of power prediction for the proposed 

method. Mahmoud et al. (2018) proposed the 

wind power prediction method by incorporating 

the extreme learning machine (ELM) and self-

adaptive evolutionary extreme learning machines 

(SAEELM). By conducting the comparison via 

the real wind farm in Australian, the proposed 

method was observed with better performance than 

other traditional method. Yan and Ouyang (2019) 

proposed a hybrid model for better precision and 

efficiency in the prediction of wind power. In the 

proposed method, the wind power was predicted 

by the physical model with low precision. 

Secondly, the correction model based on data-

driven methods was developed. The correction and 

optimization for the second model was conducted. 

By comparing to the traditional methods, the 

proposed method improved the precision in the 

prediction of wind power by 40-80%. Ghadi 

et al. (2014) conducted a case study of wind 

power prediction by the proposed hybrid model 

of neural network and evolutionary algorithm. 

The prediction and comparison was made for the 

next 36 hours of short-term and very short-term 
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interval. Results showed that the proposed method 

improved the accuracy in the prediction wind 

power for the investigated wind farm. Hao et al. 

(2019) predicted the wind power by the proposed 

dilation and erosion (DE) clustering algorithm. 

The proposed DE clustering algorithm was able to 

cluster the similar numerical weather prediction 

(NWP) information automatically without 

supervision. A case study conducted showed that 

the employed DE algorithm and new generalized 

regression neural network (GRNN) model led to 

better performance than other compared methods. 

Memarzadeh and Keynia (2020) proposed a hybrid 

wind speed forecasting model by including the 

modules of crow search algorithm (CSA), wavelet 

transform (WT), Feature selection (FS), mutual 

information (MI), and Long Short Term Memory 

(LSTM) neural networks for deep learning time 

series prediction. In the WT module, the original 

time series data was decomposed into 4 sub-layers 

for the training process. The proposed numerical 

model and included algorithm was validated via 

the 4 real site data in the Middle East. Better 

accuracy and lower error were demonstrated in 

this study by the proposed model. Ding and Meng 

(2020) proposed a hybrid model for wind speed 

forecasting. Linear and non-linear components 

were extracted, processed by individual sub-model, 

and integrated afterward. The effectiveness and 

uncertainty of the proposed model was verified by 

a case study. The decomposition method for the 

original data was introduced in some studies (Liu 

et al., 2020; Ding and Meng, 2020). In the study of 

Liu et al. (2020), the original data was decomposed 

into 9 layers, and the data of first layer was 

removed. The resulted mean absolute percentage 

error (MAPE) was about 5% in the prediction of 

wind speed among the investigated sites.

As mentioned in the reviewed literatures, the 

data pre-process treatments (i.e., decomposition 

and wavelet transformation, etc.) were integrated 

in the proposed hybrid model to improve the 

precision of wind power prediction. The effect 

of individual process on the prediction precision, 

however, was not discussed clearly in literature. 

The purpose of the present study is to conduct 

the case study of wind power prediction. The 

precision improvement methods are introduced 

separately. For the method of significant effect of 

improvement on prediction precision would be 

identified by comparing the calculated data with 

real values. The regression and neural network 

methods are introduced and compared. The first 

prediction is made by the raw data directly without 

the process of data treatment. Then, the methods 

of data process are introduced as the second 

prediction. The effect of data treatment process is 

also investigated by comparing the corresponding 

results. The combination of tested sub-model 

with better prediction precision is proposed for 

the experimental wind turbine system within the 

campus. A case study on a MW scale wind farm 

is then conducted to verify the performance of the 

proposed prediction model. The optimal procedure 

of the investigated wind turbines is proposed based 

on the calculated results of the present study.

2.	�Numerical Models and 
Investigated Wind Farms

In the present study, the regression and neural 

network models are employed for the prediction 

of wind power. The relationship between wind 

speed and generated power is developed by the 

training process. The performance of the produced 

prediction model is evaluated and compared with 

different wind turbine systems. By introducing the 

one-year-long wind data measured in the renewable 
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energy campus of the Institute of Nuclear Energy 

Research (INER), the annual energy production 

(AEP) of the investigated wind turbine can be 

evaluated, especially via the regression model. 

The predicted AEP by the regression model is 

then compared with that by the linear prediction 

model evaluated in our previous works (Chen,  

2018). Secondly, the method of neural network is 

introduced, especially for the short-term prediction 

of wind power. Different configurations of 

neural network algorithm are considered and the 

performances are evaluated and compared. Finally 

integrated algorithm for the prediction of wind 

power is proposed.

Among the available models of Machine 

Learning and Deep Learning, the Regression 

Learner model is employed in the present study. 

All of the available models are listed in Table 1.

Within the Regression Learner model, there 

are several sub-models available for the training 

process as listed in Table 2. All of the available 

sub-models are employed in the training process, 

and the one with minimum RMSE is exported for 

later prediction.

Comparing to the regression model, the neural 

network method is employed as the comparison on 

the precision of prediction. The type of time-series 

data is usually handled by the long-short-term-

memory model. In the present study, the toolbox 

for time-series problem in MATLAB (Matrix 

Laboratory) is employed. There are 3 sub-models 

available. The first one is Nonlinear Autoregressive 

with External Input (NARX). In this sub-model, 

the generated power is predicted based on the 

historical value of power and corresponding 

wind speed and direction. The second sub-model 

is Nonlinear Autoregressive (NAR). In this 

sub-model, only the historical value of power 

generation is needed for model development and 

test. The last one is the Nonlinear Input-Output 

sub-model. As noted in the user menu of MATLAB 

code, the precision of NARX is much better than 

Nonlinear Input-Output sub-model. Thus, the 

last sub-model is not employed for the following 

investigation.

The employed NARX model is the recurrent 

dynamic network including the several layers of 

network and feedback connection. Several studies 

employed the NARX model for the time-series 

prediction in the past (Menezes and Barreto, 2008; 

Diaconescu, 2008; Guzman et al., 2017). The 

mathematical formulation of NARX model is show 

in equation (1) as:

Table 1.	�Available models of Machine Learning 
and Deep Learning (by author)

Model Remark
Classification Learner
Deep Network 
Designer
Neural Network 
Clustering
Neural Network Fitting
Neural Network Pattern 
Recognition
Neural Network Time 
Series

Preferred in short-term 
prediction

Regression Learner Employed in the 
present study

Table 2.	�Available sub-models of Regression 
Learner model (by author)

Prediction model Sub-Model

Regression Learner

Linear
Regression Trees
Support Vector 
Machines (SVM)
Gaussian Process 
Regression
Ensembles of Trees
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y(t) =  �f (y(t − 1), y(t − 2), …, y(t − n), x(t − 1), 

x(t − 2),…, x(t − n))		           (1)

where x is the input data, y is the output data, 

and t represents the time-series data type. The 

schematic diagram of the NARX model in shown 

in Figure 1. By providing the historical input and 

output data, the prediction model will be obtained 

by the training process where the weighting 

parameters (w for weighting and b for bias) in the 

neural networks are determined.

The effect of decomposition of the raw power 

generation data on the prediction performance 

is examined by using the Signal Multiresolution 

Analyzer  of  MATLAB.  The  t rea tment  of 

decomposition of the raw data is also known as 

empirical mode decomposition (EMD). The raw 

data will be break down into several components. 

The decomposed component can be described as 

intrinsic mode function (IMF). By removing the 

component of high frequency part, a smoothed 

data will be obtained from a complicated raw data. 

The method of data decomposition is expected to 

improve the prediction precision as suggested in 

literature (Yin et al., 2019; Liu et al., 2020; Ding 

and Meng, 2020; Memarzadeh and Keynia, 2020). 

For the decomposition layers, a preliminary test 

showed that using more layers in decomposition 

leads to subtle improvement in the precision of 

prediction. Thus, the decomposition is made with 

default parameter.

2.1	Employed wind turbine 
systems
In this study, the 150 kW, 25 kW and 1 

kW wind turbine systems are considered for 

the investigation. The 150 kW horizontal axis 

wind turbine (HAWT) system was developed by 

INER since 2009 with compliance of IEC 61400-

1. Second generation with variable pitch was 

proposed in 2014. Detail specification of INER 

150 kW-II is shown in Table 3. The turbine system 

of INER 25 kW is also included in the present 

study. The rated power is 25 kW at the wind speed 

of 12 m/s. Other specifications are listed in Table 

3. The model of 3 and 5 blades of 1 kW wind 

turbine system are considered to investigate its 

effect on the performance of power generation. 

The 3 kW wind farm is developed with three 

1 kW wind turbine systems. Its specification is 

shown in Table 3. The wind speed and power 

generation data for the system of 150 kW, 25 kW 

and 1 kW in the campus of INER are collected 

by the self-developed Supervisory Control and 

Data Acquisition (SCADA) system. Comparing 

the investigated wind turbine systems, the rated 

Revolutions per Minute (RPM) for the 1 kW 

system is much faster, and the active control 

Fig. 1. Schematic diagram of NARX model (MathWorks, 2019).
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systems for pitch and yaw angle are not available.

The MW scale commercialized wind farm 

is also considered in the present study. Three 

previously mentioned wind farms are developed 

as the experimental facilities for R&D. The long 

term operation data are available only for the 3 

kW wind farm with the smallest scale among 

the investigated cases. The 25 and 150 kW wind 

turbine are operated only during the day time 

for experiment and test, without the long term 

continuous data. Thus, the commercial and MW 

scale wind farm is considered to examine the 

performance of the proposed prediction models.

The LuZhu wind farm was developed since 

December, 2013. The construction was completed 

and operation initiated since Feb-2015 with total 

cost of 480 million NTD. This wind farm belongs 

to Taiwan Power Company (TPC) and operated 

by Department of Renewable Energy of TPC. 

There were eight Enercon, E-44/90 wind turbines 

installed in this wind farm. The hub heights are 55 

m with rotor diameter of 44 m. The wind speed 

of rated power is 16.5 m/s, and the total installed 

capacity is 7.2 MW.

The hourly power generation data of the 

LuZhu wind farm is collected from the website of 

Information Disclosure of Taiwan Power Company 

(TPC) (TPC, 2020). The corresponding wind speed 

and direction are collected from the website of 

Central Weather Bureau (CWB) (CWB, 2020). By 

observing the collected power generation and wind 

data, the duration with stronger wind and power 

is selected for the present study, i.e., from 10-15-

2019 to 10-29-2019. The selected duration is also 

the season with strong Northeast Monsoon. Most 

of the wind power for Taiwan is mainly from the 

Northeast Monsoon in winter time. The collected 

power generation and corresponding wind speed 

are shown in Figure 2.

3. Results and Discussion

The performance of the trained model for 

wind power prediction is evaluated with the actual 

value for the investigated wind turbine systems. 

The performance of the developed model is 

Table 3. Specification of three investigated wind turbine systems (by author)

Specification 150 kW 25 kW 1 kW
Standard IEC 61400-1 IEC 61400-1 IEC 61400-1
IEC class Class-IA Class-IA Class-IA

Blade number 3 3 3/5
Turbine type Up-wind Up-wind Up-wind

Rated output power 150 kW 25 kW 1,000 W
Hub height 50 m 25 m 5 m
Tower type Jacket Monopile Monopile

Cut-in speed 3 m/s 4 m/s 2.5 m/s
Rated speed 12 m/s 12 m/s 12 m/s

Cut-out speed 25 m/s 22 m/s 50 m/s
Rated RPM 45~50 RPM 55~65 RPM 750 RPM

Pitch angle control Active control: 5° ~ 85° Active control: 0° ~ 90° N/A
Yaw angle control Active control: ±180° Active control: ±180° N/A
Rotating diameter 22.8 m 12.46 m 2 m



Journal of Taiwan Energy Volume 8, No. 3, September 2021242

evaluated via the indexes of RMSE, MAE, and 

MAPE.

3.1	Regression model for wind 
power prediction

The relationship of wind speed and generated 

power via the 25 kW wind turbine system is shown 

in Figure 3. An obvious trend could be observed 

in this figure. With faster wind speed, larger wind 

power could be generated by the 25 kW wind 

turbine system.

The wind speed response plot of regression 

model in training process for 25 kW wind turbine 

is indicated in Figure 3. The predicted values are 

compared with the true value. Among the scattering 

variation, the predicted values are roughly in the 

middle of the true values. The optimized sub-

model of this trained model is Quadratic SVM. 

The R-Squared value is 0.86 with RMSE of 94.34 

and MAE of 66.637. It took 27.103 sec for training 

process.

The trained model is then employed to 

Fig. 2. Hourly power and wind speed of LuZhu wind farm (by author).

Fig. 3. Wind speed response plot of regression model training for 25 kW wind turbine (by author).
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calculate the AEP with one-year-long wind data 

collected in the campus of INER. The predicted 

AEP by the regression model is 52 MWh, and 

it is 57 MWh by the Wind Atlas Analysis and 

Application Program (WAsP) model. As indicated 

in this comparison, the predicted AEP by the 

regression model is in the same order of that by 

WAsP in the case of 25 kW wind turbine system. 

Similar procedure for the model development by 

regression is conducted for the 150 kW and 3 kW 

wind turbines.

Comprehensive comparison of the prediction 

performance using raw data for different wind 

turbine systems is shown in Table 4. For the 

case of 25 kW wind turbine system, the main 

pattern is captured properly with high R-Square 

value comparing to other cases. In general, the 

regression model for the 25 kW wind turbine 

system should be applicable for the short-term 

prediction for wind power but not suitable for the 

prediction of AEP in this wind farm. For the case 

of 150 kW and three 1 kW wind turbine system, 

there is no obvious trend could be obtained due to 

the scattered distribution of the original data. The 

R-square values are 0.11 and 0.01, respectively, 

indicating almost no relationship could be obtained 

between the regression model and original data. 

Although the predicted AEPs are comparable with 

that by WAsP model, the regression models for the 

150 kW and three 1 kW wind turbine system won't 

be applicable for the short-term prediction of wind 

power.

3.2 Effect of average interval
The effect of average interval of raw data 

for the 1 kW wind turbine system is conducted by 

processing the raw data with different time interval 

for average, namely 1 min., 10 min., 30 min., and 

60 min. The regression models are re-built based 

on the processed data set. The performances of the 

regression model with two selected time series data 

are compared as indicated in Figure 4.

As shown in Figure 4, the RMSE for the case 

of 1 min. is very large with MAPE larger than 

100%, indicating the developed regression model 

is unable to find reasonable trend from input data 

for prediction. In the case of 10 min., the reduction 

of RMSE is very obvious, and it is furtherly 

reduced in the case of 30 min. and 60 min. The 

optimal case is 60 min. of set 2 data with RMSE of 

14 W and MAPE of 22%.

It can be deduced that the regression model 

is unable to predict reasonably with the data of 1 

min. average interval. With larger average interval, 

namely 60 min., the performance of the proposed 

regression model is much better with smaller error. 

However, comparing to the referred studies, the 

resulted MAPE was generally smaller than 10%. 

Table 4. Summary for the performance of regression prediction (by author)

Item 25 kW 150 kW 1 kW X 3
Optimized sub-model Quadratic SVM Linear Linear
R-Square 0.86 0.11 0.01
RMSE (kW) 94.34 4.2 87.75
MAE (kW) 66.637 3.43 61.703
Training time (sec) 27.10 4.52 1.33
AEP prediction (MWh) 52 89.63 0.393
AEP by WAsP (MWh) 57 89.4 0.57



Journal of Taiwan Energy Volume 8, No. 3, September 2021244

Thus, other advanced data pre-process method 

and prediction algorithm should be introduced to 

improve the precision of the prediction model.

3.3	Neural network method with 
decomposition

The neural network model is developed by the 

NARX and NAR model. The data decomposition 

of raw data is made by the Signal Multiresolution 

Analyzer with default parameters. The relative 

energy of the decomposed data is shown in Figure 

5. Original data is decomposed based on different 

range of frequencies. Higher frequency is classified 

into Level 1 (0.25 to 0.499). In Level 2, the 

frequency is from 0.121 to 0.259. In Level 3, the 

frequency is from 0.0603 to 0.129, and it is 0.0301 

to 0.0647 for Level 4. The approximated results is 

obtained by extracted the data of Level 1 to 4 from 

the raw data.

Among the investigated wind turbines, it 

can be observed that the portion belonging to 

higher frequencies is higher for 3 kW wind turbine 

system. The remained approximation is less than 

half comparing to the raw data. For the system of 

25 kW and 150 kW, however, high frequencies 

portion are much less (below 5%), and more than 

80% data remained in the approximated data. 

Fig. 4.	� Comparison of (a) RMSE and (b) MAPE 
for the effect of average time interval (by 
author).

Fig. 5. Relative energy of decomposed data (by author).
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For the system of 150 kW, the remained portion 

is more than 90%. It can be concluded from this 

analysis that more high frequency relative energy is 

observed for smaller wind turbine, while it would 

be small portion for larger wind turbine among the 

present investigated systems.

The results are compared when introducing 

the method of decomposition with the NARX 

model as shown in Figure 6. As mentioned in the 

previous section, the prediction is made by the 

NARX model using the data of power, wind speed 

and direction as the case of Raw in Figure 6. Two 

additional models are proposed with approximated 

power data (Appro.) and raw data combined with 

4 sets of decomposed data (L1234). For the case of 

Appro., the precision of 99% is achieved where the 

decomposed 4 sets of data are removed from the 

raw data.

It is obviously observed that the cases simply 

using raw data leads to larger MAPE. For the case 

of 3 kW, the resulting MAPE is larger than 100%. 

This is mainly due to the lower height of the 3 

kW wind farm, and its coming wind and power 

production would be significantly affected by the 

nearby buildings and trees. For higher wind turbine 

system, such as 25 kW and 150 kW, their hub 

height are 25 m and 150 m, respectively. The effect 

of nearby obstacles on the wind farm and power 

production is relatively insignificant, leading to 

smaller MAPE in the prediction test as shown in 

Figure 6.

Considering the large alteration for the case 

of Appro. (more than 50% of decomposed data 

removed for the case of 3 kW), the results of this 

case might not be pragmatic, but as a reference 

for comparison. For the case of L1234, pretty 

good results are obtained. This configuration 

should be more pragmatic since the original 

data is still employed with 4 additional sets of 

decomposed data. With the extracted feature from 

the decomposed data, there is no need to modify 

the original power data to reach better prediction 

performance. For the case of 25 and 150 kW, the 

MAPE are below 10% (6.6% and 7.9%), but it is 

still relatively large for the case of 3 kW (17.7%). 

Among the investigated wind turbines, smaller 

wind turbine leads to larger error, and larger wind 

turbine leads to better prediction performance. 

Fig. 6. Performance by different method with NARX model (by author).
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The validity of this trend should be verified for the 

larger coastal wind turbines.

The results with decomposed process using 

NAR model are compared in Figure 7. When 

using the NAR model, only the data of power 

generation is needed without the information of 

wind speed and direction. It is shown that the 

MAPE for the case using raw data and NAR model 

is generally larger than 100%. This is mainly due 

to the weather data (wind speed and direction) is 

excluded in the NAR model comparing to NARX 

model. When directly introduce the highly non-

linear power production data for the training and 

testing process for the NAR model, larger error is 

expected comparing to NARX model. Thus, the 

data decomposition and other pre-process methods 

should be included to improve the prediction 

precision.

Besides the case of raw and Appro., three 

additional tests are conducted with different level 

of extraction from the raw data. In the case of 

L234, the data of Level 1 is removed, and the 

removal is Level 1 and 2 for L34. In the case of 

L4, the data of Level 1, 2, and 3 are removed. In 

the case of Appro., all four sets of decomposed 

data are removed. It should be noted that the 

MAPE for the case of 25 kW-raw is divided by 100 

for better presentation. Results show that smaller 

errors are achieved with more deleted data set. 

But the process of removing the decomposed data 

also makes the employed value far away from the 

original distribution. Besides the case of raw, larger 

MAPEs are obtained for the 3 kW wind turbine in 

other cases, and it is much smaller for 25 and 150 

kW wind turbines. By deleting a layer of data, the 

MAPE lower than 20% can be achieved for 25 and 

150 kW, and it is large improvement comparing the 

case of raw (258% and 7193% respectively). By 

deleting two layers of data, the MAPE lower than 

5% is achieved for 25 and 150 kW, but it is still 

larger than 10% for 3 kW. Further deletion makes 

the MAPE smaller than 3%, and it is less than 1% 

for the case of Appro. Therefore, with more layers 

of data deleted, smaller error could be obtained 

by the proposed method. However, the ratio of the 

deleted data and raw data should be considered 

simultaneously, especially for the case of small 

wind turbine.

Fig. 7. Performance by different method with NAR model (by author).
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In the present study, the decomposition is 

made with 4 layers. More layers of decomposition 

was made in other studies (Liu et al., 2020; Ding 

and Meng, 2020). In the study of Liu (Liu et al., 

2020), the original data was decomposed into 9 

layers, and the data of first layer was removed. The 

resulted MAPE was about 5% in the prediction of 

wind speed among the investigated sites. In the 

present study, the proposed model is employed to 

predict generated power. By removing 1 layer of 

4 decomposed data, the resulting MAPE are 19% 

and 14% for 25 kW and 150 kW wind turbine, 

respectively. The effect of decomposition layers 

on the precision of prediction can be conducted in 

the future. Better improvement is also observed 

for larger wind turbine in the present study. 

Further larger commercial wind turbine and its 

data are applied to examine the performance of the 

proposed model for power prediction in the next 

section.

3.4	Case study for the MW scale 
wind farm

The method of wavelet transformation is 

introduced in this section. It is also expected to 

improve the prediction precision by removing the 

data of high frequency as mentioned in relevant 

study (Li et al., 2018). The comparison of the raw 

data of the investigated MW scale wind farm and 

the processed data via decomposition and wavelet 

method is presented in Figure 8. As compared 

in Figure 8, the large scale fluctuations for the 

approximated curve via decomposition method 

are almost vanished, leading to pretty smooth 

variation. For the curve via the wavelet method, 

the denoise process only vanish small amount of 

peak fluctuations. In overall, the wavelet denoise 

data is almost the same with that of raw data. It 

is expected the performance of prediction via 

the approximated data will be very good since 

the processed curve is pretty smooth. However, 

the processed values are much far away from the 

original data, making it a not practical approach 

among the investigated methods. The data via the 

wavelet method are almost the same with that of 

raw data. It would be applicable if its prediction 

performance is good enough.

The time series data via the decomposition 

Fig. 8. Comparison of power data via different process method (by author).
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method are presented in Figure 9, Figure 10, Figure 

11, and Figure 12. Four additional sets of data are 

generated by the decomposition method, namely 

L1, L2, L3, and L4. Much more fluctuations are 

Fig. 9. Decomposition curve of level 1 (by author).

Fig. 11. Decomposition curve of level 3 (by author).

Fig. 10. Decomposition curve of level 2 (by author).

Fig. 12. Decomposition curve of level 4 (by author).
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observed in the curve of L1, and it alleviates in 

the following curve. In the curve of L4, it is much 

smooth and only small amount of variations are 

observed.

Comprehensive comparisons for the wind 

farm of MW scale using different sub-models are 

presented in Table 5, Table 6 and Table 7. For the 

case using regression method, three additional sub-

models are considered for comparison. In case 1, 

only the raw data are employed for training and 

test. In case 2, the 4 sets of decomposed data are 

included. In case 3, the target data are replaced 

by the approximated data. In case 4, the wavelet 

denoise data are employed as the target of training 

and test.

As compared in Table 5, the performance of 

the prediction model using the regression method 

is not good, with MAPE about 30% to 37%. For 

the case including the decomposed additional data 

set, the precisions are slightly improved, and there 

is no obvious variation when using the method 

of wavelet transformation. It is deduced that the 

non-linear behavior and pattern of the raw data 

for the MW scale wind farm cannot be effectively 

identified by the regression method.

Secondly, the prediction model using the 

neural network is proposed by the NARX and 

NAR method, respectively. Similar to previously 

mentioned procedure, three cases are considered. In 

case 1, only the raw data are included. Additional 

decomposed data sets are considered as case 2, and 

wavelet denoise data is designated as the target as 

case 3.

Results are compared in Table 6. Improvement 

of 33% (from 36.65% to 24.72%) is observed in 

case 1 when comparing to the case of regression 

model. In case 2 of NARX model, the MAPE 

significantly reduces to 4.19%, making it the most 

appropriate option among the considered models. 

Comparing to the relevant study (Liu et al., 2020) 

where the raw data was decomposed into 9 layers 

and the data of first layer was removes, the resulted 

MAPE was about 5%. Further investigation and 

parametric study could be conducted based on this 

case. In case 3, improvement of 49% (from 37.63% 

to 19.29%) is observed.

Finally, the prediction model using the NAR 

sub-model is proposed. In case 1, only raw data is 

employed. In case 2, the target is replaced to the 

approximated data since only the target data set 

is needed for the NAR sub-model. In case 3, the 

target is replace by the wavelet denoise data.

Table 5.	�Comparison of prediction results of 
regression method (by author)

Case 
Number Sub-model MAPE by 

Regression (%)
1 Raw 36.65
2 Raw + L1234 30.41

3 Raw + L1234, App. 
Target 31.44

4 wavelet denoise 
Target 37.63

Table 6.	�Comparison of prediction results of 
NARX method (by author)

Case 
Number Sub-model MAPE by 

NARX (%)
1 Raw 24.72
2 Raw + L1234 4.19

3 wavelet denoise 
Target 19.29

Table 7.	�Comparison of prediction results of NAR 
method (by author)

Case 
Number Sub-model MAPE by  

NAR (%)
1 Raw 20.62%
2 Decom. App 0.31%

3 wavelet denoise 
Target 20.62%
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Results are compared in Table 7. Slightly 

improvement is observed in case 1 and case 3. 

The reduction of MAPE is about 5% comparing 

to that of NARX. In case 2, the MAPE reduces to 

only 0.31%, indicating the precision of prediction 

is higher than 99%. As mention in the previous 

section, the employed approximated data set of 

case 2 is significantly different from the original 

raw data. It is not practical when deploying to 

further prediction. In case 3, the effect of using 

the wavelet method is not significant on the 

improvement of precision as observed in the 

previous discussion.

4. Conclusion

The purpose of this study is to conduct the 

wind power prediction by the regression and 

neural network methods for the experimental 

and commercial wind turbine systems. The first 

prediction is made by the raw data without the 

process of data treatment. Then, the methods 

of data process are introduced for the second 

prediction. The method of dada process with 

significant effect on the performance of wind 

power prediction is identified for the case study of 

MW scale wind farm.

The effect of decomposition of the raw power 

generation data on prediction is examined. Results 

show that the relative energy of high frequency 

is observed for small wind turbine, while it is 

small portion for larger wind turbine. Among the 

investigated conditions, smaller wind turbine leads 

to larger error, and larger wind turbine results 

in better prediction performance. The proposed 

prediction model is then applied to the MW scale 

wind farm. Following points are drawn based on 

the calculated results:

(1)	The performance of regression model is not 

good in the MW scale wind farm, and the 

resulting MAPE is generally larger than 30%.

(2)	Better performance is obtained using the 

NARX model combined with the decomposed 

data sets, and the resulted MAPE is comparable 

(< 5%) with the relevant study in literature. The 

NARX model is also a practical method since 

the employed raw data is not altered.

(3)	The precision of 99% can be obtained using the 

NAR model. Such high precision is reached 

by removing about 50% of the decomposed 

data. However, it is not pragmatic due to its 

significant alteration of the employed data. 

(4)	There is not obvious improvement (ΔMAPE < 

1%) in the prediction by using the method of 

wavelet transformation due to its insignificant 

modification from raw data.

(5)	By using the proposed NARX model with 

data decomposition method, the wind power 

prediction model can be employed to achieve 

the policy goal made by the Bureau of Energy, 

Ministry of Economic Affairs in 2020 (error of 

one-hour ahead prediction should be less than 

6.5% in 2022, 5% in 2025, and 4% in 2030).
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使用迴歸與類神經網路法進行風力發電量預測分析

陳銘宏1*

摘　要

本研究之目的在於使用迴歸與類神經網路法進行風力發電預測。在NAR (Nonlinear Autoregressive)

模式下，將原始資料拆解並去除部分之後，可有較佳之預測結果，但須同時考慮去除之資料與原始

數據之比例，尤其是小型風機；在NARX (Nonlinear Autoregressive with External Input)模式下，則無

需刪除資料亦可改善預測之結果。本研究接著應用所提出之預報系統至MW等級之風場進行案例分

析。計算之結果顯示，使用NARX模式結合數據拆解前處理程序時，可獲得較佳之結果，而採用小

波轉換法處理數據後，對於預測準確度沒有明顯的影響。
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