:::

臺灣能源期刊論文全文

臺灣能源期刊第12卷第2期內容

出刊日期:June, 2025

題目
海底電纜熱損耗和溫度變化分析
Title
Analysis of Thermal Losses and Temperature Variations in Submarine Cables
作者
洪浩烜、朱育霆、周雅文、楊秉純
Authors
Hao-Xuan Hong, Yu-Ting Chu, Ya-Wen Chou, Bing-Chwen Yang
摘要
本研究利用COMSOL Multiphysics軟體對海底電纜在環境溫度28oC–32oC下,負載電流範圍50– 300安培(每50安培為一組)時的電磁感應現象及溫度上升情況進行模擬分析。研究中,針對三芯海 底電纜建立了詳細的幾何模型和網格系統,並模擬在不同電流負載下的電磁場變化,進一步分析電 纜各部位的熱損耗及其溫度變化。研究結果指出,國際標準IEC 60287在熱損耗估算上存在高估現 象,特別是在鎧裝層的熱損耗,在不同負載下均為模擬分析的四倍以上。這是由於IEC標準在考慮 集膚效應、鄰近效應以及環境散熱條件時採用了保守的假設。相比之下,模擬結果更為準確地反映 實際運行條件下的熱損耗。透過使用BOBYQA最佳化方法,本研究成功縮小模擬結果與實驗數據之 間的誤差,銅導體溫度幾乎無誤差,表皮溫度的最大誤差僅在9.8%內。本研究的模擬結果還提供未 來研究的方向,例如模擬海底電纜在不同海床埋設深度下的溫度分布和熱損耗影響,以及考慮海水 流速和環境溫度對電纜性能的潛在影響。這些結果對於提升海底電纜設計的精度和可靠性具有重要 意義,為再生能源的穩定供應提供了更加可靠的技術支持。
關鍵字
海底電纜,熱損耗,COMSOL模擬,IEC 60287,電磁感應
Abatract
This study utilizes COMSOL Multiphysics software to simulate and analyze the electromagnetic induction phenomena and temperature rise of submarine cables under ambient temperatures ranging from 28oC to 32oC, with a current loads range of 50 to 300 A (in increments of 50 A). A detailed geometric model and mesh system were developed for the three-core submarine cable to simulate the electromagnetic field variations under different current loads and further analyze the heat loss and temperature changes in various parts of the cable. The results indicate that the international standard IEC 60287 overestimates heat loss, particularly in the armor layer, where the estimated losses are more than four times higher than those from the simulation analysis. This discrepancy is due to the conservative assumptions made by the IEC standard when accounting for skin effect, proximity effect, and environmental heat dissipation conditions. In contrast, the simulation results more accurately reflect the heat loss in actual operating conditions. By employing the BOBYQA optimization method, the study successfully reduced the error between the simulation results and experimental data, with the copper conductor temperature showing almost no error and the maximum error in surface temperature remaining within 9.8%. The findings of this study also suggest directions for future research, such as simulating the temperature distribution and heat loss of submarine cables at different burial depths and considering the potential impact of seawater flow rate and ambient temperature on cable performance. These results are significant for improving the accuracy and reliability of submarine cable design, providing more reliable technical support for the stable supply of renewable energy.
Keywords
Submarine cable, Heat loss, COMSOL simulation, IEC 60287, Electromagnetic induction.