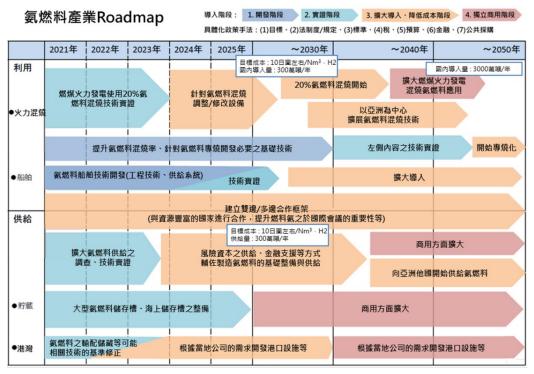
日本氨燃料應用於火力發電之發展狀況

石蕙菱


一、背景

近期國際減碳趨勢興起,各國紛紛訂定淨零碳規劃與期程,在檢 視各應用部門減碳進程之際,可取代傳統化石燃料的燃料類,例如氫 氣相關燃料逐漸獲得重視。

由於氨與氫雷同,經過燃燒之後沒有二氧化碳排放,且在常壓下以-33°C即可液化保存,不僅運儲成本相較於液氫低廉,也可利用現有肥料產業相關之基礎建設,甚至也可利用天然氣相關基礎設施,近期利用氨作為氫氣載體的呼聲遂日益增高。

二、日本政府對於氨應用之現況

為達 2050 年淨零碳目標,進一步減少碳排、提升再生能源占比, 日本將氨作為燃料更加活用是未來選項之一。2021 年 5 月,日本經 產省(NEDO)將氨納入「綠色成長戰略」的 14 項淨零碳發展領域之中, 欲藉此達成 2050 年氫或氨能發電 10%占比的目標,故對於氨的相關 應用,除了目前降低既存的肥料產業碳排放量之外,日本更欲利用氨 作為燃煤火力發電以及船舶等中大型運輸載具的燃料。下圖 1 為日本 現對於氨燃料產業發展的藍圖規劃:

資料來源:日本經產省(2021)

圖 1 日本政府氨燃料產業發展藍圖

另一方面,作為新型低碳/零碳燃料,日本早於2014年即開始研發並有部分研究成果,相關研究可分為以下三大計畫:

1.戰略性創新創造計畫(SIP)

2014年日本內閣府啟動之戰略研發計畫,第一期(2014~2018) 進行 11 項課題之補助研發之中,能源類占三項,計畫中的能源載體 課題以促進氫氣社會早日實現為目標,進行氨、有機水合物、液化氫 等載體之生產、利用技術,且其中氨相關研發投入經費最多。

此計畫與氨燃料相關的技術之一為利用去碳氫氣之氨製造、儲存、輸送相關技術開發,意即過去氨之製造以天然氣為原料,改採以零碳氫氣為原料。氫氣來源以太陽光發電之電力電解水製造,在低溫低壓下以新型釘觸媒合成氨,並作為 47kW 渦輪發電機之燃料測試。本案由日本氣體化學廠日揮主導,並結合產總研福島再生能源研究所之場域,於 2018 年實證完成。

另外一項相關技術為燃煤混燒發電,由 IHI 公司測試氨燃料在燃煤火力電廠穩定燃燒之可能。以 10MW 實驗爐,20%(熱當量)氨燃料與微粉碳混燒,可確保排氣中之 NOx 值與煤碳專燒水準相同。另外中國電力於岡山縣水島火力電廠 2 號機的 120MW 機組中,混燒約 1MW 當量之氨燃料進行電力供應實證,發現並無額外 NOx 與氨滑等問題,故此技術後續於 NEDO 後續計畫中擴大驗證。

2. 氫氣社會構築技術開發事業

此計畫由 NEDO 下次世代電池與氫氣部負責推動,利用去碳氨燃料之燃氣輪機聯合循環(GTCC)系統技術開發計畫,由三菱日立電力系統(現三菱電力)投入 500MW 的氨燃料大型氣體渦輪機之機制研究。該計畫直接以氨當燃料,且利用 GTCC 機組之渦輪機排熱(550℃)將液體氨分解為氫氣與氮氣,再送進渦輪機燃燒發電,以探索氨利用比例、氨分解壓力,以及氨分解溫度。

本案於 2019~2020 年延續於 NEDO 於 2018 年的研究。研究方向為使發電成本低於其他零碳發電技術之條件模擬、氨分解裝置性能檢討,以及 20%之氨分解氣體混燒之 NOx 驗證。而三菱電力於 SIP 與 NEDO 研發計畫結束後,已於 2021 年 3 月提出新的氨燃料發電技術開發計畫。

3. 碳循環、次世代火力發電等技術開發

NEDO(環境部)自2019年起實施二階段氨燃料研發計畫,其中

較有代表性的為液態氨直接噴霧氣體渦輪機系統研究開發,由 IHI 延續 SIP 計畫之成果,於 2019~2020 年間於 NEDO 支援下,與東北大學、產總研進行混燒比例擴大之實證。過去為提高氨燃料混燒比例,蒸發器、控制閥等附帶設備需大型化而拉高成本,因此以液態氨直接噴霧機制可解決此問題。

此案計畫期間已達成混燒率 70%且穩定燃燒、NOx 抑制成功之成果。目標為 2025 年達成專燒商業化。另外,IHI 同時實驗藍氨之取得管道。並於 2020 年 8~10 月與日本能源經濟研究所 (IEEJ)、沙烏地阿拉伯石油公司 (Saudi Aramco) 合作藍氨之供應。

除此項目之外,基於前期 IHI 之成果再擴大,NEDO 另於 2021 年補助「1GW 級燃媒火力混燒 20%氨燃料之實證研究」計畫,目標 由原本的 10MW 燃媒鍋爐機組擴大至 1GW 之實證,目前已完成混燒 20%的示範運轉,且示範結果顯示混氨機組發電效率較純煤燃燒機組 僅減少 3%,且尾氣 NOx 排放濃度<150 ppm,故有其發展空間。

本案由 IHI 負責實證用之燃燒器之設計與開發, JERA 提供碧南火力電廠 (愛知縣) 4 號機為主要試驗場域,並提供液氨儲槽、氣化器等附屬設施建設、及氨之取得。另外, JERA 已提出「JERA 零排於2050」之願景規劃,挑戰2050年國內外事業實質零碳排。未來在確保經濟合理性下,將以導入綠色燃料以求發電時零碳排放。以上各項相關技術發展請見下表1。

表 1 日本目前主要氨燃料應用發展狀況整理

主導者	技術	狀態/後續
日揮	綠氨生產機制	2018 年已於福島結合當地再生能源建構綠氨 生產示範,無進一步後續。
中國電力	燃煤電廠部份替 換氨燃料	2018 年於水島火力電廠完成實驗並申請專 利,無後續。
TOYOTA Energy Solutions	微型氣體渦輪機	2019 年已完成 300KW 級專燒試驗,預計商業 化,但無後續。
IHI	氣體渦輪機混燒	2020 年 2MW 機組已可做到 70%之氨燃料混 燒,朝 2025 年專燒商業化發展。

	微粉碳混燒氨燃料	持續發展,2021 年起與 JERA 進行 1GW 大型 化混燒實證。
	藍氨海外供應鏈	2020 年已與沙烏地阿拉伯進行五個月的實驗,無後續。
三菱電力	熱分解 NH、之 GTCC 混燒	已於 2020 年完成 500MW 級之實驗計畫,無後續。
	氨燃料直接專燒 氣體渦輪機	2021 年啟動 40MW 級專燒機制計畫,尚無政府補助資訊。
J-Power 、 中外爐	工業爐燃燒器轉 用火力電廠	2021 年啟動計畫。

資料來源:工研院產科國際所(2022/03)

三、氨混烧發電技術問題

雖然氨燃料技術已進入示範驗證階段,仍有以下挑戰需要克服:

- 1.機組穩定性:若要使用氣態氨燃燒,須加裝氣化裝置,對系統 穩定性有所影響,且液氨的氣化潛熱比煤油等一般液體燃 料的汽化潛熱大很多,易導致燃燒器內部溫度下降,進而 影響燃燒效率。
- 2.燃燒穩定性:由於氨的燃燒速度比天然氣慢,也容易產生燃燒 不穩定的問題。
- 3.安全性: 氨較無爆炸危險,但洩漏時易造成社會不安。
- 4.空氣汙染:目前 NOx 僅能做到與一般火力電廠排放量相等,並 非完全沒有汙染物。
- 5.裝置成本:需改良燃燒室/鍋爐或是加裝氣化裝置,因而增加裝置成本。
- 6.料源成本:目前日本規劃皆為綠氫或藍氫轉為氨之後再行運送,發電(製造、轉化、運儲)成本雖然比純氫低,但比化石燃料高。

四、結論與建議

氨為日本納入未來邁向淨零碳的重點脫碳技術之一,以其燃燒發

電可作為低碳大型發電的選項,尤其在氣體渦輪發電上,可作為氫氣 發電的過渡燃料,或是在燃煤鍋爐發電上,可以混燒模式降低原有碳 排放量。

日本將液態氨直接投入燃燒,分解為氫氣再燃燒之方式,目前因經濟效益不足已放緩。不過液態氨之供應鏈原本就已存在,也可利用天然氣的運儲技術與基礎設施,適合作為中期(2030~2040年)發電選項。鑒於我國火力發電廠短期難以退場,氨混燒或專燒技術可以既有機組改造,在不擴增機組的情況下達成減碳效果。另外,氨碳混燒可達一定的減碳功能,且適度降低我國對天然氣之需求,故氨燃料混燒技術可待日本或其他國家實證完成後導入。