:::

臺灣能源期刊論文全文

臺灣能源期刊第6卷第2期內容

出刊日期:June, 2019

題目
預處理對類神經網路短期負載動態預測的影響
Title
The Effect of Preprocessing on Neural Network for Short-Term Electricity Load Forecasting
作者
陳春志、許倢歆、游凱為、楊世銘
Authors
Chuen-Jyh Chen, Chieh-Hsin Hsu, Kai-Wei Yu, Shih-Ming Yang
摘要
建立基於粗糙集的短期負載預測類神經網路模型,預測未來一天至一周之電力需求。該模型由一組數據驗證,包括中央氣象局的天氣因素和台電公司的歷史負載。應用粗糙集通過消除冗餘屬性來修改模型。預處理的影響提高了類神經網路模型的可靠性,成功地避免了系統的複雜性;因此它比傳統的類神經網絡模型表現更好。藉由MATLAB模擬預測模型中,發現結果可以提高電力系統預測的可靠性,進一步幫助能源經濟和策略規劃。
關鍵字
類神經網路、粗糙集、短期負載預測、預處理
Abatract
A short-term load forecasting neural network model based on rough sets is established to predict future power demand one day to one week ahead. The model is validated by a set of data including both weather factors from Central Weather Bureau and history load from Taiwan Power Company. Rough set is applied to modify the model by eliminating redundant attributes. The impact of preprocessing increases the reliability of the neural network model, which successfully avoids the complexity of the system; hence it performs better than the traditional neural network model. The model for forecasting is simulated in MATLAB and the results can increase the reliability of power system to further help energy economic and strategy planning.
Keywords
Artificial Neural Network, Rough set, Short-term load forecasting, Preprocessing